Le clans des mouettes

ainsi est la force.
 
AccueilAccueil  FAQFAQ  RechercherRechercher  S'enregistrerS'enregistrer  MembresMembres  GroupesGroupes  Connexion  

Partagez | 
 

 L'École du Micro d'Argent, Spectre électromagnétique et TAY

Voir le sujet précédent Voir le sujet suivant Aller en bas 
AuteurMessage
yanis la chouette



Nombre de messages : 7780
Localisation : http://yanis.tignard.free.fr/
Date d'inscription : 09/11/2005

MessageSujet: L'École du Micro d'Argent, Spectre électromagnétique et TAY   Jeu 23 Nov à 3:13

Le spectre électromagnétique est la description de l'ensemble des rayonnements électromagnétiques classés par fréquence, longueur d'onde ou énergie1. Le spectre électromagnétique s'étend théoriquement de zéro à l'infini en fréquence (ou en longueur d'onde), de façon continue. Pour des raisons tant historiques que physiques, on le divise en plusieurs grandes classes de rayonnement, qui s'étudient par des moyens particuliers à chacune d'entre elles.

La spectroscopie ou spectrométrie est l'étude expérimentale des spectres électromagnétiques par des procédés, d’observation et de mesure avec décomposition des radiations en ondes monochromatiques. La spectroscopie s'intéresse en général au spectre d'absorption ou au spectre d'émission d'un objet.

Histoire

Jusqu'au XIXe siècle, la seule partie du spectre électromagnétique qui était connue était le spectre visible ou spectre optique. Si le phénomène d'arc-en-ciel était connu des premiers humains, ce n'est qu'au XVIIe siècle que Newton a mis en évidence le fait que la lumière blanche peut être décomposée en diverses couleurs.

Le terme spectre, signifiant « apparence immatérielle », « illusion » s'appliquait, au XVIIe siècle, à tous les phénomènes optiques qu'on ne s'expliquait pas. Synonyme de couleur accidentelle, il servait pour les impressions rétiniennes du contraste simultané ou successif aussi bien que pour les irisations vues au bord d'un objet regardé à travers un prisme2. Newton l'employa une seule fois pour présenter ses expériences en optique dans son article de 16713. Ayant expliqué que la lumière blanche est « un mélange hétérogène de rayons différemment réfrangibles » (op. cit., p. 3079) et que les couleurs ne sont pas des qualifications de la lumière, comme on l'estimait depuis Aristote, mais des propriétés originales, différentes dans chaque rayon ; que les moins réfrangibles sont de couleur rouge, et les plus réfrangibles sont d'un violet profond, et cette association de propriétés ne peut être brisée par aucun moyen (op. cit., p. 3081) ; que les transmutations de couleurs ne se produisent que lorsqu'il y a mélange de rayons. Ce sont ces couleurs de mélange, et non celles séparées par le prisme, qui sont illusoires, fugaces et apparentes. Dès lors, Newton utilise toujours l'expression « couleurs prismatiques », laissant le spectre pour les phénomènes douteux ou inexpliqués. Mais l'usage d'appeler ces couleurs « spectrales » persiste, alimenté et promu par les opposants à la théorie physique de la lumière comme Goethe4 suivi par Schopenhauer5.

Ce n'est qu'en 1800 que William Herschel découvre de façon plutôt fortuite l'existence d'une radiation lumineuse non-visible, le rayonnement infrarouge. L'année suivante, le physicien allemand Johann Wilhelm Ritter prolonge le spectre électromagnétique connu du côté des courtes longueurs d'onde en mettant en évidence l'existence du rayonnement ultraviolet.

L'interprétation de la lumière comme la propagation d'une onde électromagnétique est due à James Clerk Maxwell dans les années 1860, qui prédit également l'existence d'ondes électromagnétiques de toutes les fréquences possibles, se déplaçant toutes dans le vide à la vitesse de la lumière c. Les travaux du physicien Heinrich Hertz permettent la découverte en 1886 des ondes hertziennes, dites aussi ondes radio, qui étendent encore le spectre électromagnétique en deçà de l'infrarouge dans le domaine des basses fréquences ou des grandes longueur d'onde. Les expériences sur les tubes électroniques permettent à Wilhelm Röntgen de mettre en évidence l'existence d'un nouveau type de rayonnement, de plus courte longueur d'onde que l'ultraviolet, les rayons X.

La dernière portion du spectre électromagnétique, les rayons gamma, commence à être explorée au début du XXe siècle avec les travaux de Paul Villard et William Henry Bragg.
Grandeurs physiques caractéristiques
Présentation

Un rayonnement électromagnétique peut se considérer soit comme une onde progressive, soit comme un ensemble de particules.

Si on le considère comme une onde, on peut le décomposer, selon la transformation de Fourier, en une somme d'ondes monochromatiques, dont chacune est entièrement décrite par deux grandeurs physiques :

   son amplitude,
   sa fréquence ou sa longueur d'onde, grandeurs corrélées par la célérité de l'onde.

Si on le considère comme un ensemble de particules, chacune d'entre elles est entièrement décrite par son énergie. La répartition des énergies et leur somme obéissent aux lois statistiques.

unités

   la fréquence, notée f {\displaystyle f} f ou ν {\displaystyle \nu } \nu , s'exprime en hertz (Hz) dans le Système international d'unités (SI);
   la longueur d'onde dans le vide (ceci est toujours sous entendu par la suite), notée λ {\displaystyle \lambda } \lambda , s'exprime en unités de longueur (en mètres (m) dans le SI);
   l'énergie des photons, notée E {\displaystyle E} E, s'exprime en joules (J) dans le SI, mais aussi couramment en électron-volt (1 eV = 1,602 176 53×10−19 J).

Relations

Pour une propagation de la lumière dans le vide on passe d'une grandeur à l'autre par les relations suivantes :

   ν = 1 T {\displaystyle \nu ={\frac {1}{T}}} \nu = \frac 1T
   λ = c ⋅ T = c ν {\displaystyle \lambda =c\cdot T={\frac {c}{\nu }}} \lambda = c\cdot T =\frac{c}{\nu}
   E = h ⋅ ν = h T = h ⋅ c λ {\displaystyle E=h\cdot \nu ={\frac {h}{T}}={\frac {h\cdot c}{\lambda }}} E = h\cdot\nu = \frac hT = \frac{h\cdot c}{\lambda}

Dans ces relations,

   h {\displaystyle h} h est la constante de Planck : h {\displaystyle h} h ≈ 6,626 069 57 × 10−34 J s ≈ 4,134 335 9 × 10−15 eV s

   c {\displaystyle c} c est la vitesse de la lumière dans le vide c {\displaystyle c} c = 299 792 458 m s−1 (cette valeur est exacte, du fait de la définition actuelle du mètre).

Utilisation

On caractérise habituellement les ondes radio par la fréquence, qui s'applique aussi bien aux circuits des appareils qu'on utilise pour les produire.

Quand les fréquences croissent, les longueurs d'onde correspondantes se raccourcissent jusqu'à devenir du même ordre de grandeur que les appareils, et deviennent le paramètre d'utilisation le plus courant.

Au-delà d'une certaine limite, on utilise principalement des instruments d'optique, tout comme pour la lumière, et la longueur d'onde dans le vide devient la caractéristique la plus commode. Elle joue directement dans le calcul des interférences dans les réseaux de diffraction et dans beaucoup d'autres applications.

À partir des rayons X, les longueurs d'ondes sont rarement utilisées : comme on a affaire à des particules très énergétiques, l'énergie correspondant au photon X ou γ détecté est plus utile.
Domaines du spectre électromagnétique
Domaines du spectre électromagnétique.svg
Domaines du spectre électromagnétique Nom Longueur d'onde(m) Fréquence(Hz) Énergie du photon (eV)
Rayon gamma < 10 pm > 30 EHz > 124 keV
Rayon X 10 pm – 10 nm 30 EHz – 30 PHz 124 keV – 124 eV
Ultraviolet 10 nm – 390 nm 30 PHz – 750 THz 124 eV – 3,2 eV
Visible 390 nm – 750 nm 770 THz – 400 THz 3,2 eV – 1,7 eV
Infrarouge 750 nm – 0,1 mm 400 THz – 3 THz 1,7 eV – 12,4 meV
Térahertz / submillimétrique 0,1 mm - 1 mm 3 THz - 300 GHz 12,4 meV - 1,24 meV
Micro-ondes 1 mm - 1 m 300 GHz - 300 MHz 1,24 meV - 1,24 μeV
Ondes radio 1 m – 100 000 km 300 MHz – 3 Hz 1,24 μeV – 12,4 feV

On découpe habituellement le spectre électromagnétique en divers domaines selon la longueur d'onde et le type de phénomène physique émettant ce type d'onde6.

   Ondes radioélectriques ou ondes hertziennes : oscillations d'électrons au sein d'un circuit électrique comme une antenne.
   Micro-ondes : oscillations d'électrons au sein de composants électriques spécifiques (comme une diode Gunn par exemple), rotation moléculaire.
   Térahertz (domaine sub-millimétrique, limite micro-ondes / infrarouge lointain) : niveaux de vibration de molécules complexes.
   Infrarouge : oscillations de particules, vibration moléculaire, transitions d'électrons de valence au sein d'atomes ou de molécules.
   Lumière visible : transitions d'électrons de valence de haute énergie, qui ont la particularité d'être détectées par l'œil humain.
   Ultraviolet: transitions d'électrons de valence d'atomes ou de molécules de plus haute énergie encore, et donc non observables par l'œil humain.
   Rayons X : transitions d'électrons des couches profondes au sein d'un atome, accélération ou décélération (bremsstrahlung) d'électrons libres de haute énergie.
   Rayons gamma : transitions au sein du noyau atomique, souvent émis lors de la désexcitation de noyaux-fils issu de la désintégration radioactive d'un noyau instable, de façon spontanée ou sous l'effet d'une accélération au sein d'un accélérateur de particules.

Le découpage détaillé en bandes de fréquence selon les normes de l'IUT se trouve dans le paragraphe « Usages et classification » ci-dessous.
Spectre lumineux
Article détaillé : Spectre visible.
Le domaine visible du spectre électromagnétique

Le rayonnement électromagnétique visible est la très étroite portion du spectre électromagnétique accessible à la perception humaine visuelle ; elle correspond à la plus forte énergie de rayonnement solaire arrivant à la surface de la Terre. La sensibilité humaine est maximale aux alentours d'une longueur d'onde dans le vide de 550 nm en vision photopique, avec des éclairements importants, de l'ordre de grandeur de ceux qui se trouvent dans la journée à la surface de la Terre. De part et d'autre de ce maximum, la sensibilité diminue progressivement. Elle est de moins de 1 % du maximum à 410 nm et à 690 nm, et il n'en reste rien à 360 nm. Du côté des basses énergies, on détecte au plus jusqu'à 820 nm, bien que très faiblement, mais les êtres humains et autres animaux terrestres sentent le rayonnement infrarouge sous forme de chaleur sur la peau. En vision scotopique, nocturne, le maximum est à 510 nm et on ne distingue pas les couleurs.

La colorimétrie relie la mesure physique du rayonnement à la couleur perçue. Un humain normal peut distinguer au mieux des ondes de longueur d'onde différant de moins de 1 nm, et plus d'une centaine de niveaux de luminosité7. Pourtant, la description d'une couleur n'a pas besoin d'autant de données que pourrait laisser croire la spectroscopie. Les humains n'ont en vision diurne que trois types de récepteurs, et de nombreux mélanges de radiations de longueurs d'onde différentes, dites métamères, se perçoivent identiquement.
Usages et classification

Les définitions des bandes mentionnées dans le tableau sont les suivantes (normalisation internationale effectuée par l’UIT8, sauf pour la bande THF) ; elles sont aussi communément désignées par leur catégorie de longueur d’onde métrique. Dans le tableau ci-dessous, les longueurs d'onde sont calculées avec l'approximation courante : c = 3 × 10 8   m ⋅ s − 1 {\displaystyle c=3\times 10^{8}\ m\cdot s^{-1}} c=3 \times 10^8 \ m\cdot s^{-1}
Bandes Fréquences Longueur d’onde Usages
Ondes TLF (Tremendously Low Frequency) 0 Hz à 3 Hz 100 000 km à ∞ Champs magnétiques, ondes et bruits électromagnétiques naturels
Ondes ELF (Extremely Low Frequency) 3 Hz à 30 Hz 10 000 km à 100 000 km Ondes électromagnétiques naturelles, résonance terrestre de Schumann, ondes du cerveau humain, recherches en géophysique, raies spectrales moléculaires
Ondes SLF (Super Low Frequency) 30 Hz à 300 Hz 1 000 km à 10 000 km Ondes électromagnétiques naturelles, résonance terrestre de Schumann, ondes physiologiques humaines, ondes des lignes électriques, usages inductifs industriels, télécommandes EDF Pulsadis, harmoniques ondes électriques
Ondes ULF (Ultra Low Frequency) 300 Hz à 3 kHz 100 km à 1 000 km Ondes électromagnétiques naturelles notamment des orages solaires, ondes physiologiques humaines, ondes électriques des réseaux téléphoniques, harmoniques ondes électriques, signalisation TVM des TGV
Ondes VLF (Very Low Frequency) 3 kHz à 30 kHz 10 km à 100 km Ondes électromagnétiques naturelles, radiocommunications submaritimes militaires, transmissions par CPL, systèmes de radionavigation, émetteurs de signaux horaires
Ondes LF (Low Frequency) ou ondes kilométriques 30 kHz à 300 kHz 1 km à 10 km Ondes électromagnétiques naturelles des orages terrestres, radiocommunications maritimes et submaritimes, transmissions par CPL, radiodiffusion en OL, émetteurs de signaux horaires, systèmes de radionavigation
Ondes MF (Medium Frequency) ou ondes hectométriques 300 kHz à 3 MHz 100 m à 1 km Systèmes de radionavigation, radiodiffusion en OM, radiocommunications maritimes et aéronautiques, radioamateurs, signaux horaires et ADSL
Ondes HF (High Frequency) ou ondes décamétriques 3 MHz à 30 MHz 10 m à 100 m Radiodiffusion internationale, radioamateurs, radiocommunications maritimes, aéronautiques, militaires et d’ambassades, aide humanitaire, transmissions gouvernementales, applications inductives autorisées, transmissions par CPL, signaux horaires, CB en 27 MHz, radar trans-horizon
Ondes VHF (Very High Frequency) ou ondes métriques 30 MHz à 300 MHz 1 m à 10 m Radiodiffusion et télédiffusion, radiocommunications professionnelles, transmissions militaires, liaisons des secours publics, radionavigation (VOR et ILS) et radiocommunications aéronautiques, radioamateurs, satellites météo, radioastronomie, recherches spatiales
Ondes UHF (Ultra High Frequency) ou ondes décimétriques 300 MHz à 3 GHz 10 cm à 1 m Télédiffusion, radiodiffusion numérique, radioamateurs, radiocommunications professionnelles, transmissions militaires y compris aéronautiques, liaisons gouvernementales, liaisons satellites, FH terrestres, radiolocalisation et radionavigation, services de la DGAC, usages spatiaux, satellites météo, téléphonie GSM, UMTS et DECT, liaisons Wi-Fi et Bluetooth, systèmes radar, fours à micro-ondes
Ondes SHF (Super High Frequency) ou ondes centimétriques 3 GHz à 30 GHz 1 cm à 10 cm FH terrestres et par satellite, systèmes radar, liaisons et FH militaires divers, systèmes BLR, radioastronomie et usages spatiaux, radiodiffusion et télédiffusion par satellite, liaisons Wi-Fi
Ondes EHF (Extremely High Frequency) ou ondes millimétriques 30 GHz à 300 GHz 1 mm à 1 cm FH terrestres et par satellite, recherches spatiales, radioastronomie, satellites divers, liaisons et FH militaires, radioamateurs, systèmes radar, raies spectrales moléculaires, expérimentations et recherches scientifiques
Ondes THF (Tremendously High Frequency) 300 GHz à 384 THz 0,78 µm à 1 mm

(ondes micrométriques)
Ondes infrarouges

(subdivis. recommandée par la CIE)

   Infrarouges C ou IR lointain (IR-C ; LIR)
   (300 GHz à 100 THz)
   (3 µm à 1 mm)
       Infrarouges à ondes longues (LWIR)
       (8 µm à 15 µm)
       Infrarouges à ondes moyennes (MWIR)
       (3 µm à 8 µm)

   Infrarouges B ou IR moyen (IR-B ; MIR)
   (100 à 214 THz)
   (1,4 µm à 3 µm)

   Infrarouges A ou IR proche (IR-A ; PIR)
   (214 à 384 THz)
   (0,78 µm à 1,4 µm)

Ondes infrarouges

(suivant autre schéma de subdivision)

   Infrarouges extrêmes (EIR)
   (300 GHz à 20 THz)
   (15 µm à 1000 µm)
   Infrarouges lointains (FIR)
   (20 à 50 THz)
   (6 µm à 15 µm)
   Infrarouges moyens (MIR)
   (50 à 100 THz)
   (3 µm à 6 µm)
   Infrarouges proches (NIR)
   (100 à 384 THz)
   (0,78 µm à 3 µm)

384 THz à 300 PHz 10 à 780 nm

(ondes nanométriques)


   Spectre visible par l’homme (couleurs « spectrales ») :
       Ondes visibles rouges (384 à 480 THz soit 780 à 625 nm)
       Ondes visibles orange (480 à 510 THz soit 625 à 590 nm)
       Ondes visibles jaunes (510 à 508 THz soit 587 à 560 nm)
       Ondes visibles vert-jaune (517 à 521 THz soit 580 à 575 nm)
       Ondes visibles vertes jaunâtres (521 à 535 THz soit 575 à 560 nm)
       Ondes visibles vertes (535 à 604 THz soit 560 à 497 nm)
       Ondes visibles vert bleuté (566 à 610 THz soit 530 à 492 nm)
       Ondes visibles cyans (610 à 616 THz soit 492 à 487 nm)
       Ondes visibles bleu azur (616 à 622 THz soit 487 à 482 nm)
       Ondes visibles bleues (622 à 645 THz soit 482 à 465 nm)
       Ondes visibles indigo (645 à 689 THz soit 465 à 435 nm)
       Ondes visibles violettes (689 à 789 THz soit 435 à 380 nm)

   Fin du spectre visible du violet et début de la transition vers les UV-A 750,000 à 788,927 THz
   Transition spectrale vers les UV-A 788,927 à 849,481 THz

   Rayonnements dits « ionisants » :
       Ultraviolet :
           Ultraviolets UV-A (849,481 THz à 951,722 THz soit ~400-315 nm)
               UVA I : 400-340 nm
               UVA II : 340-315 nm
           Ultraviolets UV-B (951,722 THz à 1070,687 THz soit 315-280 nm soit ~315-290 nm)
           Ultraviolets UV-C (1 070,687 à 29 979,245 GHz soit ~290-100. Bande spectrale constituée de 3 sous-bandes)
               Ultraviolets UV-C (1070,687 THz à 1498,962 THz soit 280-180 nm)
               Ultraviolets V-UV (1 498,962 à 2 997,924 THz soit ~200-100 nm)
               Ultraviolets X-UV, transition vers les rayons X (2 997,924 à 29 979,245 THz soit ~140-10 nm)

300 PHz à 300 EHz 1 pm à 10 nm

(ondes picométriques)


   Rayonnements dits « ionisants » (suite) :
       Rayons X :
           Rayons X mous (300 PHz à 3 EHz ; 0,01-10 nm)
           Rayons X durs (3 EHz à 30 EHz ; 10-100 pm)
       Rayons gamma :
           Rayons gamma mous (30 EHz à 300 EHz ; 1-10 pm)
           Rayons gamma durs (au-delà de 300 EHz ; < 1 pm) (au-delà de la bande THF)

Spectre d'émission
Article détaillé : spectre d'émission.

Des atomes ou molécules excités (par exemple par chocs) se désexcitent en émettant une onde électromagnétique. Celle-ci peut se décomposer en une superposition d'ondes sinusoïdales (monochromatiques) caractérisées par leurs longueurs d'onde. Le spectre est constitué par l'ensemble des longueurs d'ondes présentes. On peut le matérialiser à l'aide d'un prisme de décomposition de la lumière en un ensemble de lignes, les raies spectrales, qui correspondent aux différentes longueurs d'ondes émises. Pour plus de précision, on peut également représenter ce spectre comme un graphe de l'intensité lumineuse en fonction de la longueur d'onde.

L'observation du spectre d'émission de l'hydrogène se fait au moyen d'un tube Geissler qui comporte deux électrodes et de l'hydrogène sous faible pression. Les électrodes sont soumises à une différence de potentiel de 1 000 V. L'important champ électrique accélère les ions présents qui, par chocs, excitent les atomes d'hydrogène. Lors de leur désexcitation, ils émettent de la lumière qui est analysée par un spectroscope. Dans tous les cas on observe (dans le visible) le même spectre composé de 4 raies (spectres de raies) aux longueurs d'ondes : 410 nm, 434 nm, 486 nm, 656 nm.

Niels Bohr interprétera alors l'émission de lumière par l'émission d'un photon lorsque l'atome passe d'un niveau d'énergie à un autre. Le spectre d'émission de n'importe quel élément peut être obtenu en chauffant cet élément, puis en analysant le rayonnement émis par la matière. Ce spectre est caractéristique de l'élément.
Spectre d'absorption
Article détaillé : spectre d'absorption.

Le principe est exactement le même que celui du spectre d'émission : à un niveau d'énergie donné correspond une longueur d'onde. Mais au lieu d'exciter de la matière (par exemple en la chauffant) pour qu'elle émette de la lumière, on l'éclaire avec de la lumière blanche (donc contenant toutes les longueurs d'ondes) pour voir quelles longueurs d'ondes sont absorbées. Les niveaux d'énergie étant caractéristiques de chaque élément, le spectre d'absorption d'un élément est exactement le complémentaire du spectre d'émission. On s'en sert notamment en astrophysique : par exemple, pour déterminer la composition de nuages gazeux, on étudie leur spectre d'absorption en se servant des étoiles se situant en arrière-plan comme source de lumière. C'est d'une manière générale le but de la spectrographie d'absorption : identifier des éléments inconnus (ou des mélanges) par leur spectre.
Voir aussi

Sur les autres projets Wikimedia :

   Spectre électromagnétique, sur Wikimedia Commons spectre électromagnétique, sur le Wiktionnaire

Bibliographie

   Richard Taillet, Loïc Villain et Pascal Febvre, Dictionnaire de physique, Bruxelles, De Boeck, 2013, p. 634-635

Articles connexes

   Onde
   Propagation des ondes
   Onde radio
   Propagation des ondes radio
   Radiométrie
   Couleur
   Efficacité lumineuse spectrale

Notes et références

   ↑ Richard Taillet, Loïc Villain et Pascal Febvre 2013, p. 635 « Spectre ».
   ↑ Trésor de la langue française, Oxford English Dictionnary.
   ↑ « A letter from M. Isaac Newton », Philosophical Transactions,‎ 1671, p. 3075-3087 (lire en ligne [archive]) ; voir Spectre visible
   ↑ Traité des couleurs, 1810
   ↑ Sur la vue et les couleurs, 1816.
   ↑ Richard Taillet, Loïc Villain et Pascal Febvre 2013, p. 634 Fig. 175.
   ↑ Robert Sève, Science de la couleur : Aspects physiques et perceptifs, Marseille, Chalagam, 2009, p. 121-122.
   ↑ Union internationale des télécommunications, « Nomenclature des bandes de fréquences et de longueurs d'onde employées en télécommunication » [archive], sur itu.int pour les bandes 3 à 15, soit de 300 Hz à 3 000 THz.

[masquer]
v · m
Spectre électromagnétique
              ← Hautes fréquences               Basses fréquences →

              ← Faibles longueurs d'onde               Grandes longueurs d'onde →

Rayons gamma · Rayons X · Ultraviolet · Visible · Infrarouge · Térahertz · Micro-ondes · Ondes radio
Ultraviolets UV-A · UV-B · UV-C
Bande U
Lumière visible Violet · Bleu · Vert · Jaune · Orange · Rouge
Bande B · Bande V · Bande R
Infrarouges Infrarouge proche · Infrarouge moyen · Infrarouge lointain
Bande I · Bande Y · Bande J · Bande K
Micro-ondes Bande W · Bande V · Bande U · Bande Q · Bande Ka · Bande K · Bande Ku · Bande X · Bande C · Bande S · Bande L
Ondes radios ELF · SLF · ULF · VLF · LF · MF · HF · VHF · UHF · SHF · EHF
Bande I · Bande V
Longueur d'onde Basse fréquence · Moyenne fréquence · Haute fréquence/Onde courte

IAM - Petit frère (Audio officiel)
https://www.youtube.com/watch?v=NonWfgHegDU


Voyelles.
Arthur Rimbaud: Voyelles (1883)

A noir, E blanc, I rouge, U vert, O bleu : voyelles,
Je dirai quelque jour vos naissances latentes :
A, noir corset velu des mouches éclatantes
Qui bombinent autour des puanteurs cruelles,

Golfes d'ombre ; E, candeurs des vapeurs et des tentes,
Lances des glaciers fiers, rois blancs, frissons d'ombelles ;
I, pourpres, sang craché, rire des lèvres belles
Dans la colère ou les ivresses pénitentes ;

U, cycles, vibrements divins des mers virides,
Paix des pâtis semés d'animaux, paix des rides
Que l'alchimie imprime aux grands fronts studieux ;

O, suprême Clairon plein des strideurs étranges,
Silences traversés des Mondes et des Anges ;
- O l'Oméga, rayon violet de Ses Yeux !

MOSAIQUE DU
CITOYEN TIGNARD YANIS


Dernière édition par yanis la chouette le Jeu 23 Nov à 3:52, édité 1 fois
Revenir en haut Aller en bas
Voir le profil de l'utilisateur http://www.atelier-yannistignard.com
yanis la chouette



Nombre de messages : 7780
Localisation : http://yanis.tignard.free.fr/
Date d'inscription : 09/11/2005

MessageSujet: Re: L'École du Micro d'Argent, Spectre électromagnétique et TAY   Jeu 23 Nov à 3:17

Jacques Prévert, Comment dessiner un oiseau

Le sens premier du mot étoile est celui d'un point lumineux dans le ciel nocturne, et par extension, des figures géométriques représentant des rayons partant d'un centre, voir le symbole de l'étoile. En astronomie, la signification scientifique plus restreinte d'étoile est celle d'un corps céleste plasmatique qui rayonne sa propre lumière par réactions de fusion nucléaire, ou des corps qui ont été dans cet état à un stade de leur cycle de vie, comme les naines blanches ou les étoiles à neutrons1. Cela signifie qu'elles doivent posséder une masse minimale pour que les conditions de température et de pression au sein de la région centrale — le cœur — permettent l'amorce et le maintien de ces réactions nucléaires, seuil en deçà duquel on parle d'objets substellaires. Les masses possibles des étoiles s'étendent de 0,085 masse solaire à une centaine de masses solaires. La masse détermine la température et la luminosité de l'étoile.

La plupart des étoiles se situent sur la séquence principale du diagramme de Hertzsprung-Russell, où les étoiles produisent leur énergie et leur rayonnement par conversion de l'hydrogène en hélium, par des mécanismes de fusion nucléaire comme le cycle carbone-azote-oxygène ou la chaîne proton-proton.

Pendant une grande partie de son existence, une étoile est en équilibre hydrostatique sous l'action de deux forces qui s'opposent : la gravitation, qui tend à contracter et faire s'effondrer l'étoile, et la pression cinétique (avec la pression de radiation pour les étoiles massives), régulée et maintenue par les réactions de fusion nucléaire, qui tend au contraire à dilater l'astre. À la fin de cette phase, marquée par la consommation de la totalité de l'hydrogène, les étoiles de la séquence principale se dilatent et évoluent en étoile géante qui obtient son énergie d'autres réactions nucléaires, comme la fusion de l'hélium en carbone et oxygène.

Une étoile rayonne dans tout le spectre électromagnétique, au contraire de la plupart des planètesNote 1 (comme la Terre) qui reçoivent principalement l'énergie de l'étoile ou des étoiles autour desquelles elles gravitent.

Le Soleil est une étoile assez typique dont la masse, de l'ordre de 2×1030 kg, est représentative de celle des autres étoiles.

Histoire
Ciel étoilé au crépuscule. On reconnait les constellations de Persée (au centre) et du Cocher (en bas à gauche), ainsi que l’amas des Pléiades (en bas à droite).
Mouvement apparent des étoiles autour de l’étoile polaire.

Historiquement, les étoiles sont les points lumineux du ciel visibles uniquement la nuit et fixes les uns par rapport aux autres, par opposition aux planètes qui suivent des trajectoires errantes dans le ciel nocturne au cours de l'année. Les anciens avaient une connaissance approfondie de la répartition des étoiles dans le ciel : ils les utilisaient pour la navigation et attribuaient des noms à certaines d'entre elles ainsi qu'aux formes qu'elles dessinent, les constellations. Cependant ils ignoraient tout de leur nature exacte, pensant souvent qu'il s'agissait d'orifices percés à travers la sphère célesteNote 2. C'est seulement avec l'essor de l'astronomie moderne que les étoiles ont pu être comprises comme des objets de même nature que le Soleil mais situés à des distances considérablement plus grandes. Cette hypothèse fut énoncée pour la première fois par Giordano Bruno au XVIe siècle avant d'être confirmée expérimentalement en 1838 avec la première mesure de parallaxe réalisée par Friedrich Wilhelm Bessel, ainsi que les observations spectrométriques effectuées grâce à l'appareil inventé en 1814 par l'opticien Joseph von Fraunhofer.
Description générale

Une étoile est donc un objet céleste en rotation, de forme a priori sphérique2, constitué essentiellement de plasma, et dont la structure est modelée par la gravité. Lors de sa formation, une étoile est essentiellement composée d’hydrogène et d’hélium. Durant la majeure partie de son existence, son cœur est le siège de réactions de fusion nucléaire, dont une partie de l’énergie est rayonnée sous forme de lumière ; la matière qui la compose s’en trouve presque complètement ionisée.

Le Soleil est l’étoile la plus proche de la Terre, l’énergie qu’il rayonne y permet le développement de la vie. Il apparait bien plus lumineux que toutes les autres étoiles en raison de sa proximité : la seconde étoile la plus proche de la Terre, Proxima du Centaure, est 250 000 fois plus éloignée. Sauf en cas exceptionnel comme une éclipse, les autres étoiles ne sont visibles que la nuit lorsque leur éclat n’est pas noyé par celui du ciel diurne, résultant lui-même de la diffusion de l’éclairement solaire.

Les étoiles sont regroupées au sein de galaxies. Une galaxie typique, comme la nôtre, la Voie lactée, contient plusieurs centaines de milliards d’étoiles. Au sein des galaxies, les étoiles peuvent être liées dans des systèmes multiples (quelques étoiles) ou des amas (plusieurs dizaines à quelques centaines de milliers d’étoiles).

La sphère céleste fait également apparaître des groupements d’étoiles, les constellations ; il s’agit en fait d’une illusion optique due à l’effet de projection. Les étoiles composant une constellation sont généralement situées à des distances très différentes de la Terre.

Une étoile possède une masse comprise entre 0,07 et 300 fois environ celle du Soleil (elle-même égale à 300 000 fois celle de la Terre, soit environ 2×1030 kg). Les astres de masse plus faible ne permettent pas l’amorçage des réactions de fusion nucléaire de l’hydrogène, alors que les étoiles de masse plus élevée sont sujettes à des instabilités entrainant une perte de masse. La durée de vie d’une étoile est essentiellement déterminée par la vitesse à laquelle se produisent les réactions nucléaires : plus la masse de l’étoile est élevée, plus les réactions nucléaires sont rapides et la durée de vie de l’étoile est brève. Les étoiles les plus massives ont une durée de vie de quelques millions d’années seulement, les moins massives, de plus de mille milliards d’années. Une étoile comme le Soleil a une durée de vie de l’ordre de 10 milliards d’années.

La formation d’étoiles est due à l’effondrement d’un nuage de gaz et à sa fragmentation possible en plusieurs proto-étoiles, lesquelles s’échauffent à mesure qu’elles se contractent. La température atteint alors une valeur telle que le cœur « s’allume » : l’hydrogène fusionne en hélium, fournissant l’énergie qui arrête l’effondrement. L’étoile entre alors dans la séquence principale dans laquelle elle passe la majeure partie de son existence. L’énergie produite par cette conversion est progressivement évacuée par l’étoile à la fois par convection et par radiation et s’échappe finalement de la surface de l’étoile sous forme de rayonnement, de vents stellaires et de neutrinos. Son évolution ultérieure dépend essentiellement de sa masse. Plus celle-ci est élevée, plus l’étoile est en mesure d’amorcer des réactions de fusion avec des éléments chimiques de plus en plus lourds. Elle peut ainsi synthétiser du carbone, puis de l’oxygène, du néon, etc. La quasi-totalité des éléments plus lourds que l’hélium est produite dans les étoiles (on parle de nucléosynthèse stellaire) dans les derniers stades de leur évolution. Si une étoile est suffisamment massive pour synthétiser du fer, alors elle est vouée à connaitre une fin paroxystique sous forme de supernova : son cœur implose et ses couches externes sont disloquées par le processus. Le résidu laissé par l’implosion du cœur est un objet extrêmement compact, qui peut être soit une étoile à neutrons, éventuellement détectable sous la forme d’un pulsar, soit un trou noir. Les étoiles moins massives connaissent une fin de vie moins violente : elles perdent peu à peu la majeure partie de leur masse, qui forme par la suite une nébuleuse planétaire, et voient leur cœur se contracter lentement pour former une naine blanche.
Observation
À l’œil nu

La nuit, les étoiles apparaissent à l’œil nu sous la forme de points (à cause de leur éloignement) brillants de couleur blanche, parfois aussi rouge, orangée ou bleue — généralement scintillants et sans mouvement apparent immédiat par rapport aux autres objets fixes de la voûte céleste. Le phénomène de scintillation est dû à l’extrême petitesse de la taille angulaire des étoiles (quelques millisecondes d’arc voire moins), qui est inférieure à celle de la turbulence atmosphérique. À l’inverse, les planètes, bien qu’apparaissant comme des points, ont en réalité une taille angulaire suffisante pour ne pas être soumises au phénomène de scintillation. Si les étoiles se déplacent les unes par rapport aux autres, ce mouvement propre est très faible, même pour les étoiles les plus proches, n’excédant pas quelques secondes d’arc par an, ce qui explique leur apparente immobilité les unes par rapport aux autres.

Le jour, le Soleil domine et sa lumière, diffusée par la couche atmosphérique, occulte celle des étoiles. Mais l’astre le plus brillant visible depuis la Terre est bien lui-même une étoile.

Le Soleil semble beaucoup plus gros que toutes les autres étoiles car celles-ci sont bien plus éloignées : l’étoile la plus proche de la Terre après le Soleil, Proxima du Centaure, est située à environ quatre années-lumière de nous, soit près de 270 000 fois la distance qui nous sépare du Soleil (l’unité astronomique).

Selon les conditions d’observation, le nombre d’étoiles visibles à l’œil nu varie fortement et peut atteindre plusieurs milliers dans les cas les plus favorables. Hormis le Soleil et Sirius — et encore, uniquement dans d’excellentes conditions d’observation — les étoiles sont trop peu brillantes pour être observables en plein jour (sauf lors des éclipses totales de Soleil et lors de phénomènes temporaires comme les novae ou les supernovae). L’éclat des étoiles est quantifié par une grandeur appelée magnitude apparente. Pour des raisons historiques, la magnitude est d’autant plus petite que l’astre est brillant : l’astronome de la Grèce antique Hipparque avait classifié les étoiles en astres de première grandeur pour les plus brillants, seconde grandeur pour les suivants, et ainsi de suite jusqu’à cinquième grandeur. La définition mathématique précise de la magnitude apparente reprend essentiellement cette classification, avec les étoiles les plus brillantes dotées d’une magnitude proche de 0 (à l’exception de Sirius, de magnitude -1,5 et de Canopus, de magnitude -0,7) et les plus faibles d’une magnitude supérieure à 6. Un écart de 1 en magnitude correspond à un rapport de luminosité de 2,5 environ, un écart de 5 à un rapport de 100. Le Soleil a une magnitude apparente de -26,7, c’est-à-dire que vu de la Terre, il est environ 10 milliards de fois plus brillant que Sirius.

Les étoiles semblent associées en figures géométriques plus ou moins simples, les constellations ; il s’agit d’un simple effet d’optique. Les structures stellaires réelles sont des amas (rassemblant quelques milliers d’étoiles) ou des galaxies (rassemblant de l’ordre du milliard d’étoiles).

L’observation à l’œil nu a été la première forme d’astronomie.
Avec des instruments
Bételgeuse, vue à travers le télescope ALMA

Les étoiles sont longtemps restées des points dans le ciel, et ce même vues à travers les plus puissants instruments de grossissement, tels que la lunette astronomique ou le télescope. C'est seulement à partir de la fin du vingtième siècle et du début du vingt-et-unième que la résolution angulaire des meilleurs instruments est devenue inférieure à la seconde d'arc et s'est donc avérée suffisante pour apercevoir des structures autour de certaines étoiles ainsi que pour distinguer ces étoiles comme un disque et non comme un point. Cependant encore de nos jours l'écrasante majorité des étoiles reste inaccessible à une telle observation directe.

L'essentiel des observations stellaires se concentrent donc sur des données relatives à leur spectre électromagnétique, leur luminosité ou leur polarisation, mesurées respectivement à l'aide du spectrographe, du photomètre et du polarimètre.

Après l’œil, les détecteurs utilisés furent les plaques photographiques puis les détecteurs numériques comme le CCD.

L'étude des étoiles comporte aussi celle du Soleil, qui lui peut être observé en détail, mais avec un équipement approprié, notamment de puissants filtres. L'observation du soleil est une activité potentiellement dangereuse pour l'œil et pour le matériel : elle ne doit être pratiquée que par un public averti et compétent.
Catalogues d’étoiles

Pour repérer les étoiles et faciliter le travail des astronomes, de nombreux catalogues ont été créés. Parmi les plus célèbres, citons le catalogue Henry Draper (HD) et le Bonner Durchmusterung (BD). Les étoiles y sont rangées par leurs coordonnées, alpha (ascension droite) et delta (déclinaison) et un numéro leur est attribué : par exemple, HD 122653 (célèbre géante de Population II, très déficiente en métaux).
Caractéristiques principales

Une étoile est caractérisée par différentes grandeurs :
Masse

La masse est une des caractéristiques les plus importantes d’une étoile. En effet, cette grandeur détermine sa durée de vie ainsi que son comportement pendant son évolution et la fin de sa vie : une étoile massive sera très lumineuse mais sa durée de vie sera réduite.

Les étoiles ont une masse comprise entre environ 0,08 et 300 fois la masse du Soleil, soit (très) près de 2 × 1030 kilogrammes (deux milliards de milliards de milliards de tonnes). En dessous de la masse minimale, l’échauffement généré par la contraction gravitationnelle est insuffisant pour démarrer le cycle de réactions nucléaires : l’astre ainsi formé est une naine brune. Au-delà de la masse maximale, la force de gravité est insuffisante pour retenir toute la matière de l’étoile une fois les réactions nucléaires entamées. Jusqu’à peu, on pensait que la masse d’une étoile ne pouvait excéder 120 à 150 fois la masse solaire mais la récente découverte d’une étoile ayant une masse 320 fois supérieure à celle du Soleil a rendu cette hypothèse caduque3.
Limites de masse des étoiles
Limite basse

Les étoiles ayant la plus petite masse observée (1/20e de masse solaire) sont les naines rouges, qui fusionnent très lentement l'hydrogène en hélium.
En dessous, il y a les naines brunes qui enclenchent juste la fusion du deutérium à leur formation.
Limite haute

La masse d'une étoile est limitée par les circonstances du processus de formation et par sa stabilité sur la séquence principale, essentiellement par le taux d'éjection du vent stellaire.

Les étoiles les plus massives ont généralement une masse d'environ 50 à 80 masses solaires. Les étoiles encore plus massives sont instables car la gigantesque pression de radiation qui règne en leur centre provoque l'expulsion « rapide » de la matière qui les constitue, diminuant ainsi significativement leur masse durant leur « brève » séquence principale.

On pense que la première génération d'étoiles de l'Univers, celles de la population III, furent des étoiles principalement géantes, typiquement plus de 100 masses solaires, jusqu'à 1000 masses solaires. Elles purent exister (et se maintenir durant leur « courte » séquence principale), car leur métallicité était pour ainsi dire nulle et les ions « métalliques » sont bien plus sensibles à la pression de radiation que l'hydrogène et l'hélium ionisés. Une bonne partie d'entre elles finissent en hypernovas.

En janvier 2004, Stephen Eikenberry de l'université de Californie, a annoncé avoir trouvé l'étoile la plus massive jamais observée : LBV 1806-20. Il s'agit d'une étoile très jeune qui ferait au moins 150 masses solaires. En juillet 2010, une équipe internationale d'astronomes annonce la découverte avec le VLT au Chili de l'étoile R136a1 dans la nébuleuse de la Tarentule qui serait 265 fois plus massive que le Soleil. Selon le professeur Paul Crowther de l'Université de Sheffield elle fait 320 fois la masse du Soleil4.
Estimation

La détermination de la masse d’une étoile ne peut se faire de façon précise que lorsqu’elle appartient à un système binaire par l’observation de son orbite. La troisième loi de Kepler permet alors de calculer la somme des masses des deux étoiles de la binaire à partir de sa période et du demi-grand axe de l’orbite décrite et de la distance de la Terre à l’étoile double observée. Le rapport des masses est obtenu par la mesure de la vitesse radiale des deux étoiles de la binaire. La connaissance de la somme et du rapport des masses permet de calculer la masse de chaque étoile. C’est la technique la plus précise.

D’autres estimations sont possibles pour des étoiles non binaires (simples) en utilisant la détermination spectroscopique de la gravité de surface et la mesure du rayon de l’étoile par interférométrie. Enfin, si l’étoile est observée de façon précise en photométrie et si sa distance, sa composition chimique et sa température effective sont connues, il est possible de la positionner dans un diagramme de Hertzsprung-Russell (noté HR) qui donne immédiatement la masse et l’âge de l’étoile (théorème de Vogt-Russell).
Diamètre
Taille relative de 4 étoiles et d’une planète.

Comparativement à notre planète (12 756 km de diamètre), les étoiles sont gigantesques : le Soleil a un diamètre d’environ un million et demi de kilomètres et certaines étoiles (comme Antarès ou Bételgeuse) ont un diamètre des centaines de fois supérieur à ce dernier.

Le diamètre d’une étoile n’est pas constant dans le temps : il varie en fonction de son stade d’évolution. Il peut aussi varier régulièrement pour les étoiles variables périodiques (RR Lyrae, Céphéides, Miras, etc.).

Des interféromètres comme celui du VLT de l’ESO au Chili ou CHARA en Californie permettent la mesure directe du diamètre des étoiles les plus proches.
Composition chimique

La composition chimique de la matière d’une étoile ou d’un gaz dans l’Univers est généralement décrit par trois quantités en nombre de masse : X l’hydrogène, Y l’hélium et Z la métallicité. Ce sont des grandeurs proportionnelles satisfaisant la relation : X + Y + Z = 1.
Métallicité

La métallicité est la quantité (mesurée en nombre, ou généralement par masse) des éléments plus lourds que l’hélium présents dans l’étoile (ou plutôt sa surface). Le Soleil possède une métallicité (notée Z) de 0,02 : 2 % de la masse du Soleil est composée d’éléments qui ne sont ni de l’hydrogène, ni de l’hélium. Pour le Soleil, ce sont principalement du carbone, de l’oxygène, de l’azote et du fer. Bien que cela semble faible, ces deux pour cent sont pourtant très importants pour évaluer l’opacité de la matière de l’étoile, qu’elle soit interne ou dans son atmosphère. Cette opacité contribue à la couleur, à la luminosité et à l’âge de l’étoile (voir diagramme de Hertzsprung-Russell et théorème de Vogt-Russell).

L’opacité est directement liée à la capacité de l’étoile à produire un vent stellaire (cas extrême des étoiles Wolf-Rayet).
Magnitude

La magnitude mesure la luminosité d’une étoile ; c’est une échelle logarithmique de son flux radiatif. La magnitude apparente dans un filtre donné (ex. le visible noté mv), qui dépend de la distance entre l’étoile et l’observateur, se distingue de la magnitude absolue, qui est la magnitude de l’étoile si celle-ci était arbitrairement placée à 10 parsecs de l’observateur. La magnitude absolue est directement liée à la luminosité de l’étoile à condition de tenir compte d’une correction dite bolométrique (on la note BC). L’introduction de l’échelle logarithmique des magnitudes vient du fait que l’œil possède une sensibilité également logarithmique, en première approximation (loi de Pogson).
Température et couleur

La plupart des étoiles paraissent blanches à l’œil nu, parce que la sensibilité de l’œil est maximale autour du jaune. Mais si nous regardons attentivement, nous pouvons noter que de nombreuses couleurs sont représentées : bleu, jaune, rouge (les étoiles vertes n’existent pas). L’origine de ces couleurs resta longtemps un mystère jusqu’à il y a deux siècles, quand les physiciens eurent suffisamment de compréhension sur la nature de la lumière et les propriétés de la matière aux très hautes températures.
La nébuleuse NGC 1999 est illuminée de façon spectaculaire par V380 Orionis (centre), une étoile variable d’approximativement 3,5 fois la masse du Soleil. Image NASA .

La couleur permet de classifier les étoiles suivant leur type spectral (qui est en rapport avec la température de l’étoile). Les types spectraux vont du plus violet au plus rouge, c’est-à-dire du plus chaud vers le plus froid. Ils sont classés par les lettres O B A F G K MNote 3. Le Soleil, par exemple, est de type spectral G.

Mais il ne suffit pas de caractériser une étoile par sa couleur (son type spectral), il faut aussi mesurer sa luminosité. En fait, pour un type spectral donné, la taille de l’étoile est corrélée à sa luminosité, la luminosité étant fonction de la surface — et donc de la taille de l’étoile.
Les étoiles O et B sont bleues à l’œil comme β Orionis (Rigel) ; les étoiles A sont blanches comme α Canis Majoris (Sirius) ou α Lyrae (Véga) ; les étoiles F et G sont jaunes, comme le Soleil ; les étoiles K sont orange comme α Bootis (Arcturus) ; et enfin les étoiles M sont rouges comme α Orionis (Bételgeuse).

On peut définir un indice de couleur, correspondant à la différence de flux photométrique dans deux bandes spectrales dites bandes photométriques (les filtres). Par exemple, le bleu (B) et le visible (V) formeront ensemble l’indice de couleur B-V dont la variation est reliée à la température de surface de l’étoile et donc à son type spectral. Les indices de température les plus utilisés sont le B-V, le R-I et le V-I car ce sont les plus sensibles à la variation de la température.
Vitesse de rotation
Cette étoile a une inclinaison i par rapport à l’observateur terrestre (Earth) et une vitesse de rotation équatoriale ve.

La rotation du Soleil a été mise en évidence grâce au déplacement des taches solaires. Pour les autres étoiles, la mesure de cette vitesse de rotation (plus précisément, la vitesse mesurée est la projection de la vitesse de rotation équatoriale sur la ligne de visée), s’obtient par spectroscopie. Elle se traduit par un élargissement des raies spectrales.

Ce mouvement de rotation stellaire est un reliquat de leur formation à partir de l’effondrement du nuage de gaz. La vitesse de rotation dépend de leur âge : elle diminue au cours du temps, sous les effets conjugués du vent stellaire et du champ magnétique qui emportent une partie du moment cinétique de l’astre. Cette vitesse dépend également de leur masse et de leur statut d’étoile simple, binaire ou multiple. Une étoile n’étant pas un corps solide (c’est-à-dire rigide), elle est animée d’une rotation différentielle : la vitesse de rotation dépend de la latitude.

En 2011, le Very Large Telescope découvre VFTS 102 (en), l’étoile à la plus grande vitesse de rotation jamais observée (seuls les pulsars peuvent tourner beaucoup plus rapidement), soit plus de deux millions de kilomètres par heure5.
Spectre radiatif

Le spectre d’une source lumineuse et donc d’une étoile est obtenu par des spectrographes qui décomposent la lumière en ses différentes composantes et les enregistrent par le biais de détecteurs (historiquement, des plaques photographiques et aujourd’hui des détecteurs de type CCD). Cette décomposition de la lumière révèle la distribution de l’énergie lumineuse venant de l’étoile en fonction de la longueur d'onde. Elle permet de mettre en évidence des raies spectrales en émission et/ou en absorption révélant les conditions de température, de pression et d’abondances chimiques des couches externes de l’étoile.
Champ magnétique
Article détaillé : Champ magnétique stellaire.
Champ magnétique de l’étoile massive τ {\displaystyle \tau } \tau Scorpii, obtenu par imagerie Zeeman-Doppler6.

Comme le Soleil, les étoiles sont souvent dotées de champs magnétiques. Leur champ magnétique peut avoir une géométrie relativement simple et bien organisée, ressemblant au champ d’un aimant comme le champ magnétique terrestre ; cette géométrie peut être aussi nettement plus complexe et présenter des arches à plus petite échelle. Le champ magnétique du Soleil, par exemple, possède ces deux aspects ; sa composante à grande échelle structure la couronne solaire et est visible lors des éclipses, tandis que sa composante à plus petite échelle est liée aux taches sombres qui maculent sa surface et dans lesquelles les arches magnétiques sont ancrées.

Il est possible de mesurer le champ magnétique des étoiles à travers les perturbations que ce champ induit sur les raies spectrales formées dans l’atmosphère de l’étoile (l’effet Zeeman). La technique tomographique d’imagerie Zeeman-Doppler permet en particulier de déduire la géométrie des arches géantes que le champ magnétique dresse à la surface des étoiles.

Parmi les étoiles magnétiques7, on distingue d’abord les étoiles dites « froides » ou peu massives, dont la température de surface est inférieure à 6 500 K et dont la masse ne dépasse pas 1,5 masse solaire - le Soleil fait donc partie de cette classe. Ces étoiles sont « actives », c’est-à-dire qu’elles sont le siège d’un certain nombre de phénomènes énergétiques liés au champ magnétique, par exemple la production d’une couronne, d’un vent (dit vent solaire dans le cas du Soleil) ou d’éruptions. Les taches à la surface du Soleil et des étoiles témoignent également de leur activité ; comme les champs magnétiques, les taches des étoiles peuvent être cartographiées par des méthodes tomographiques. La taille et le nombre de ces taches dépendent de l’activité de l’étoile, elle-même fonction de la vitesse de rotation de l’étoile. Le Soleil, qui effectue un tour complet sur lui-même en 25 jours environ, est une étoile ayant une faible activité cyclique. Le champ magnétique de ces étoiles est produit par effet dynamo.

Il existe aussi des étoiles chaudes magnétiques. Mais contrairement aux étoiles froides, qui sont toutes magnétiques (à différents degrés), seule une petite fraction (entre 5 et 10 %) des étoiles chaudes (massives) possède un champ magnétique, dont la géométrie est en général assez simple. Ce champ n’est pas produit par effet dynamo ; il constituerait plutôt une empreinte fossile du magnétisme interstellaire primordial, capturé par le nuage qui va donner naissance à l’étoile et amplifié lors de la contraction de ce nuage en étoile. De tels champs magnétiques ont été baptisés « champs magnétiques fossiles ».
Structure d’une étoile
Article détaillé : structure stellaire.
Structures internes d'étoiles de la séquence principale ; les zones de convection sont indiquées par des cycles avec flèches et les zones radiative, avec des zigzags rouges. À gauche une naine rouge de faible masse, au centre, une naine jaune de masse moyenne et, à droite, une étoile bleu-blanche massive de la séquence principale

À partir des différentes grandeurs mesurées et de simulations issues de différents modèles, il est possible de construire une image de l’intérieur d’une étoile, bien qu’il nous soit presque inaccessible — l’astérosismologie permettant littéralement de sonder les étoiles.

En l’état actuel de nos connaissances, une étoile est structurée en différentes régions concentriques, décrites ci-après à partir du centre.
Noyau

Le noyau (ou cœur) est la partie centrale de l’étoile, concentrant une grande partie de la masse de l’astre, dans laquelle se déroulent les réactions thermonucléaires qui dégagent l’énergie nécessaire à sa stabilité. Le noyau est la zone la plus dense et la plus chaude, et, dans le cas du Soleil, atteint la température de 15,7 millions de kelvins. Dans ces conditions extrêmes, la matière se trouve sous forme de plasma ; par effet tunnel, les noyaux d’hydrogène (protons) ou d’autres éléments chimiques atteignent des vitesses leur permettant de vaincre leur répulsion électrique et de fusionner : par exemple, dans les chaines nucléaires dites proton-proton (ou PP1, PP2…), les protons fusionnent par groupe de quatre pour donner un noyau d’hélium, composé de deux protons et de deux neutrons. Il se produit alors un dégagement d’énergie selon les réactions suivantes :

   2 (1H + 1H → 2D + e+ + νe) (4,0 MeV + 1,0 MeV)

   2 (1H + 2D → 3He + γ) (5,5 MeV)

   3He + 3He → 4He + 1H + 1H (12,86 MeV).

D’autres réactions thermonucléaires existent dans le centre des étoiles et contribuent plus ou moins à la production d’énergie.

Une partie de l’énergie dégagée sous forme de photons commence alors un long voyage vers l’extérieur, car un plasma est opaque et la lumière y voyage très difficilement. On estime qu’un photon met plusieurs millions d’années avant d’atteindre la surface de l’étoile par transfert de rayonnement puis par convection vers la surface.
Zone radiative

L’énergie libérée par les réactions de fusions nucléaires dans le noyau de l’étoile se transmet aux couches externes par rayonnement. Dans les étoiles peu massives et évoluant sur la séquence principale, cette zone radiative est surmontée d’une zone convective externe ; dans les naines rouges, la zone radiative a entièrement disparu au profit de la zone convective. Dans le Soleil, le rayonnement produit dans la partie centrale met près d’un million d’années à traverser la zone radiative.
Zone convective

Au contraire de la zone précédente, l’énergie se transmet par des mouvements macroscopiques de matière : chauffée à la base de la couche convective, la matière s’élève sous l’effet de la poussée d'Archimède, réchauffe la matière alentour (vers la surface), se refroidit et plonge vers la base de la zone convective pour un nouveau cycle. C’est le principe de la convection. Cette zone convective est plus ou moins grande : pour une étoile sur la séquence principale, elle dépend de la masse et de la composition chimique ; pour une géante, elle est très développée et occupe un pourcentage important du volume de l’étoile ; pour une supergéante, cette zone peut atteindre les trois quarts du volume de l’étoile, comme pour Bételgeuse. Dans les étoiles de très faible masse (naines rouges) ou dans les protoétoiles en formation de faible masse (étoiles T Tauri), la zone convective occupe la totalité du volume de l’étoile ; dans les étoiles plus massives que deux fois la masse du Soleil, la zone convective externe disparaît (laissant la place à la zone radiative) mais la convection subsiste au cœur de l’étoile.

C’est dans la zone convective externe que sont produits les champs magnétiques de type dynamo des étoiles froides comme le Soleil et les naines rouges.
Photosphère

La photosphère est la partie externe de l’étoile qui produit la lumière visible. Elle est plus ou moins étendue : de moins de 1 % du rayon pour les étoiles naines (quelques centaines de kilomètres) à quelques dixièmes du rayon de l’étoile pour les géantes les plus grandes. La lumière qui y est produite contient toutes les informations sur la température, la gravité de surface et la composition chimique de l’étoile. Pour le Soleil, la photosphère a une épaisseur d’environ 400 kilomètres.
Couronne

La couronne est la zone externe, ténue et extrêmement chaude du Soleil. Elle est due à la présence d’un champ magnétique, produit dans la zone convective ; on peut l’observer lors des éclipses de Soleil. C’est grâce à l’étude de la couronne au XIXe siècle que l’astronome Jules Janssen a découvert l’existence du gaz rare dont le nom fait référence au Soleil (Hélios) : l’hélium. Le fait que la température de la couronne atteigne plusieurs millions de degrés est un problème théorique difficile et non encore complètement résolu. Il est probable que la plupart des étoiles de faible masse (contenant une zone convective externe) possèdent des champs magnétiques et donc des couronnes.
Théorème de Vogt et Russell

Le théorème de Vogt-Russell peut s’énoncer ainsi : si en tous points d’une étoile la connaissance des valeurs de la température, de la densité et de la composition chimique du plasma interne sont suffisantes pour calculer la pression, l’opacité du plasma et le taux d’énergie produit, alors la masse et la composition chimique de l’étoile sont suffisantes pour décrire la structure de celle-ci. Il en résulte les relations masse-rayon ou masse-luminosité des étoiles.
Évolution
Article détaillé : Évolution stellaire.

L’histoire d’une étoile est entièrement déterminée par sa masse M et sa composition chimique X, Y, Z (théorème de Vogt et Russell). M détermine sa durée d’existence, et conditionne sa fin. L’évolution d’une étoile passe par plusieurs phases, la première est la phase naine ou séquence principale, la seconde est la phase géante puis supergéante pour terminer par la phase finale telle une supernova ou une nébuleuse planétaire.
Formation : la stellogénèse
Article détaillé : Naissance des étoiles.

Une étoile nait de la contraction d’un nuage galactique riche en hydrogène. Sous l’influence d’une onde de densité (bras de galaxie), d’une onde de choc (supernova ou nova proche), ou d’une fluctuation de densité au sein de celui-ci, une région commence à se contracter. Par un effet boule de neige, cette région, de plus en plus dense attire à elle de plus en plus de gaz. La contraction du gaz entraine son échauffement : la proto-étoile rayonne (dans l’infrarouge). Ce rayonnement ralentit par pression de radiation, mais n’interrompt pas, l’inexorable action de la gravitation sur le gaz environnant. La compression se poursuit donc tant que le gaz chute sur la proto-étoile.
Si l’échauffement interne est suffisant, il peut initier des réactions nucléaires au cœur de la proto-étoile. L’énergie dégagée par ces réactions arrête la contraction du fait de la pression de radiation ainsi générée.

Les étoiles sont formées à partir de gaz et de poussières en suspension dans la galaxie. Au début, ceux-ci s'unissent pour former des nuages moléculaires galactiques. À la suite d'une instabilité externe (voir ci-dessus), ils sont poussés à se rassembler et se contracter sur eux-mêmes par gravitation. En se contractant, les nuages galactiques forment les étoiles, ainsi que les planètes.
Au début, la température dans ces nuages est très basse, mais quand la gravitation les fragmente et les compresse, leur température augmente. Au bout de quelques milliers d'années, le nuage prend la forme d'un disque aplati. Au centre du disque, le nuage se condense en sphère dont la forte compression gravitationnelle a fait monter la température centrale à plus d'un million de degrés, et sa surface à plus de 1000°C. C'est ce qu'on appelle une protoétoile. Lorsque la température centrale atteint ces valeurs, les électrons sont détachés des noyaux atomiques, nous considérons que l'intérieur de la protoétoile est sous forme de plasma.
Dix millions d'années plus tard, le cœur de la nouvelle étoile dépasse dix millions de degrés. À ces températures, les noyaux d'hydrogène (essentiellement des protons libres) se déplacent assez rapidement pour entrer en collision, et former de l'hélium par réaction de fusion nucléaire. Les étoiles sont sans cesse soumises à la force gravitationnelle qui tend à leur effondrement. Compensant cette tendance, les particules du plasma qui bougent rapidement (grâce à la haute température) maintiennent la dilatation du gaz de l'étoile, ce qui équilibre les forces. Si la gravité finit par dominer, l'étoile s'effondrera sur elle-même jusqu'à atteindre une grande densité8.
Séquence principale
Article détaillé : Séquence principale.

Sous l’effet de la contraction, le noyau de l’étoile (sa partie centrale) atteint des valeurs de pression et de température extrêmes, qui vont jusqu’à l’allumage des réactions thermonucléaires (voir plus haut). L’étoile entre alors dans ce qu’on appelle la séquence principale, période pendant laquelle son noyau, initialement et essentiellement constitué d’hydrogène et d’hélium, va progressivement se transformer en hélium.

Durant cette période, l’antagonisme énergie libérée / gravitation concourt à la stabilité de l’astre :
Si le flux d’énergie venant du noyau vient à diminuer, la contraction qui s’ensuit accélère le rythme de production d’énergie qui stoppe la contraction ; inversement, un emballement de la production d’énergie entraine une dilatation de l’étoile, donc son refroidissement, et l’emballement s’arrête. Ainsi, il en résulte une grande stabilité de l’étoile qui est décrite dans la théorie de la structure interne stellaire sous l’appellation « pic de Gamow »[réf. à confirmer] : c’est une sorte de thermostat stellaire.
Fin d’une étoile
La Nébuleuse du Crabe forme le rémanent de supernova d’une explosion observée par les astronomes d’extrême Orient en l’an 1054.
Article connexe : Historique des naines blanches, des étoiles à neutrons et des supernovas.

Plus une étoile est massive, plus elle consomme rapidement son hydrogène. Une grosse étoile sera donc très brillante, mais aura une courte durée de vie. Lorsque le combustible nucléaire se fait trop rare dans le noyau de l’étoile, les réactions de fusion s’arrêtent. La pression de radiation maintenue par ces réactions ne compensant plus les forces de gravitation, l’étoile s’effondre sur elle-même. Plus une étoile est grosse, plus la fin de son existence sera cataclysmique, pouvant aller jusqu’à prendre la forme d’une gigantesque explosion (supernova, voire hypernova) suivie de la formation d’une étoile à neutrons (pulsar, magnétar, etc.) voire dans les cas extrêmes (selon la masse de l’étoile) d’un trou noir.
Types d’étoiles

Les astronomes classent les étoiles en utilisant la température effective et la luminosité. Cette classification à deux paramètres permet de définir des types spectraux (luminosité) variant de VI à I. Les naines par exemple (dont le Soleil) sont classées V. Parmi ces classes on distingue différentes catégories liées à la température de surface. On distingue ainsi les naines noires, brunes, rouges, jaunes et blanches, les géantes rouges et bleues, les supergéantes rouges, les étoiles à neutrons et les trous noirs. Si la plupart des étoiles se placent facilement dans l’une ou l’autre de ces catégories, il faut garder en tête qu’il ne s’agit que de phases temporaires. Au cours de son existence, une étoile change de forme et de couleur, et passe d’une catégorie à une autre.
Naines brunes
Article détaillé : Naine brune.

Les naines brunes ne sont pas des étoiles, mais des objets substellaires qualifiés parfois d'« étoiles manquées ». Leur masse est située entre celles des petites étoiles et des grosses planètes. En effet, au moins 0,08 masse solaire est nécessaire pour qu’une proto-étoile amorce des réactions thermonucléaires et devienne une véritable étoile. Les naines brunes ne sont pas suffisamment massives pour démarrer ces réactions. Elles peuvent rayonner cependant faiblement par contraction gravitationnelle.
Naines rouges
Article détaillé : Naine rouge.
Vue d’artiste d’une naine rouge.

Les naines rouges sont de petites étoiles rouges. On les considère comme les plus petites étoiles en tant que telles. Les astres plus petits comme les naines blanches, les étoiles à neutrons et les naines brunes ne consomment pas de carburant nucléaire. La masse des naines rouges est comprise entre 0,08 et 0,8 masse solaire. Leur température de surface entre 2 500 et 5 000 K leur confère une couleur rouge. Les moins massives d’entre elles (au-dessous de 0,35 masse solaire environ) sont entièrement convectives. Ces étoiles brûlent lentement leur carburant, ce qui leur assure une très longue existence. Elles sont les plus abondantes : au moins 80 % des étoiles de notre Galaxie sont des naines rouges.
La plus proche voisine du Soleil, Proxima du Centaure, en est une. Il en est de même du second système stellaire le plus proche du Système solaire, l’étoile de Barnard étant aussi une naine rouge.
Naines jaunes
Article détaillé : Naine jaune.
Le Soleil est un exemple de naine jaune.

Les naines jaunes sont des étoiles de taille moyenne — les astronomes ne classent les étoiles qu’en naines ou en géantes. Leur température de surface est d’environ 6 000 K et elles brillent d’un jaune vif, presque blanc. À la fin de son existence, une naine jaune évolue en géante rouge, qui en expulsant ses couches externes — déployant alors une nébuleuse planétaire —, dévoile une naine blanche.

Le Soleil est une naine jaune typique.
Géantes rouges
Article détaillé : Géante rouge.

La phase géante rouge annonce la fin d’existence de l’étoile, qui atteint ce stade lorsque son noyau a épuisé son principal carburant, l’hydrogène : des réactions de fusion de l’hélium se déclenchent, tandis que le centre de l’étoile se contracte, et que ses couches externes gonflent, refroidissent et rougissent. Transformé en carbone et en oxygène, l’hélium s’épuise à son tour et l’étoile s’éteint. Les couches externes de l’astre s’éloignent et son centre se contracte, dévoilant une naine blanche.
Géantes bleues et supergéantes rouges
Articles détaillés : Géante bleue et Supergéante rouge.

Sur le diagramme HR, le coin supérieur gauche est occupé par des étoiles très chaudes et brillantes : les géantes bleues. Ces étoiles très massives, au moins dix fois plus grosses que le Soleil, consomment rapidement leur hydrogène.

Lorsque le noyau d’une géante bleue ne contient plus d’hydrogène, la fusion de l’hélium prend le relais. Ses couches externes enflent et sa température de surface diminue. Elle devient alors une supergéante rouge.

L’étoile fabrique ensuite des éléments de plus en plus lourds : titane, chrome, fer, cobalt, nickel… À ce stade, les réactions de fusion s’arrêtent et l’étoile devient instable. Elle explose en une supernova et laisse derrière elle un étrange noyau de matière qui demeurera intact et qui deviendra, selon sa masse, une étoile à neutrons ou un trou noir.
Naines blanches
Article détaillé : Naine blanche.
Une naine blanche en orbite autour de Sirius (vue d’artiste).
Une naine blanche exhalant une nébuleuse à symétrie rectangulaire, la Nébuleuse du Rectangle rouge.

Les naines blanches sont les résidus de l’évolution des étoiles de faible masse (entre ~0,8 et ~5 à 8 masses solaires). Le Soleil ayant (par définition) une masse d’une masse solaire, il finira aussi en naine blanche. Les naines blanches sont des étoiles « mortes » puisqu’elles ne sont plus le lieu de réactions thermonucléaires produisant de la chaleur. Cependant, elles sont initialement très chaudes et de couleur relativement blanche (voir Loi de Wien). Petit à petit, elles se refroidissent par rayonnement, pour devenir des astres froids. Leur taille est environ égale à celle de la Terre.

Les naines blanches, comme les étoiles à neutrons sont constituées de matière dégénérée. La densité moyenne d’une naine blanche est telle qu’une cuillère à thé de matière d’une telle étoile aurait, sur Terre, le poids d’un éléphant, soit environ 1 t·cm-3. En fait, dans cette matière, les électrons, étant très proches les uns des autres, commencent alors à se repousser énergiquement. Le facteur principal de la pression provient alors du principe d'exclusion de Pauli ; c’est la pression de dégénérescence qui s’oppose à celle de la gravitation. La naine blanche est donc en équilibre malgré l’absence de fusion nucléaire en son noyau. La pression des électrons peut supporter une masse de 1,44 fois celle du Soleil : c’est la limite de Chandrasekhar.

Si une naine blanche devient plus massive (en aspirant la matière d’une autre étoile, par exemple), elle explose en supernova et est largement pulvérisée en nébuleuse. C’est le type Ia des supernovas thermonucléaires.

Procyon B et Sirius B sont des naines blanches.
Naines noires
Article détaillé : Naine noire.

Comme une plaque chauffante qu’on éteint, les naines blanches se refroidissent inexorablement. Toutefois, cela se fait très lentement, en raison de leur surface émissive fortement réduite (de la taille d'une planète tellurique) comparée à leur masse (de l'ordre de celle du Soleil). Elles perdent peu à peu leur éclat et deviennent invisibles au bout d’une dizaine de milliards d’années. Ainsi, toute naine blanche se transforme en naine noire.

L’Univers, vieux de 13,7 milliards d’années, est encore trop jeune pour avoir produit des naines noires.

Après sa mort, le Soleil deviendra une naine blanche puis une naine noire. Ce sort l’attend dans environ 15 milliards d’années.
Étoiles à neutrons et trous noirs
Articles détaillés : Étoile à neutrons et Trou noir.

Les étoiles à neutrons sont très petites mais très denses. Elles concentrent la masse d’une fois et demi celle du Soleil dans un rayon d’environ 10 kilomètres. Ce sont les vestiges d’étoiles très massives de plus de 10 masses solaires dont le cœur s’est contracté pour atteindre des valeurs de densité extraordinairement élevées, comparables à celles du noyau atomique.

Lorsqu’une étoile massive arrive en fin de vie, elle s’effondre sur elle-même, en produisant une impressionnante explosion appelée supernova. Cette explosion disperse la majeure partie de la matière de l’étoile dans l’espace tandis que le noyau se contracte et se transforme en une étoile à neutronsNote 4. Ces objets possèdent des champs magnétiques très intenses (pour les plus intenses, on parle de magnétar). Le long de l’axe magnétique se propagent des particules chargées, électrons par exemple, qui produisent un rayonnement synchrotron.

Le moment cinétique de l’étoile étant conservé lors de l’effondrement du noyau, l’étoile à neutrons possède une vitesse de rotation extrêmement élevée, pouvant atteindre le millier de tours par seconde. Si par chance un observateur sur Terre regarde dans la direction d’une étoile à neutrons et que la ligne de visée est perpendiculaire à l’axe de rotation de l’étoile, celui-ci verra alors le rayonnement synchrotron des particules chargées se déplaçant sur les lignes de champ magnétique. Ce phénomène de phare tournant s’appelle le phénomène de pulsar. On trouve des pulsars dans des restes de supernovas, le plus célèbre étant le pulsar de la nébuleuse du Crabe, né de l’explosion d’une étoile massive. Cette supernova fut observée par les astronomes chinois depuis le matin du 4 juillet 1054, en plein jour pendant trois semaines et durant la nuit pendant près de deux ans.

Parfois, le noyau de l’étoile morte est trop massif pour devenir une étoile à neutrons. Il se contracte inexorablement jusqu’à former un trou noir.
Étoiles variables
Articles détaillés : Étoile variable et Étoile éruptive.
L’allure asymétrique de Mira, une étoile variable oscillante. NASA HST.

Alors que la plupart des étoiles sont de luminosité presque constante, comme le Soleil qui ne possède pratiquement pas de variation mesurable (environ 0,01 % sur un cycle de 11 ans), la luminosité de certaines étoiles varie de façon perceptible sur des périodes de temps beaucoup plus courtes, parfois de façon spectaculaire.
Systèmes stellaires

Les étoiles se forment rarement seules. Lorsqu’un nuage de gaz (proto-stellaire) donne naissance à un amas d’étoiles, l’ensemble des étoiles de cet amas ne semble pas se distribuer au hasard, mais semble suivre une loi de distribution dite fonction de masse initiale (abrégé IMF en anglais), dont on sait peu de chose actuellement ; elle rend compte de la proportion d’étoiles en fonction de leur masse. On ne sait pas si cette fonction IMF dépend de la composition chimique du nuage proto-stellaire. La fonction la plus adoptée actuellement a été proposée par Edwin Salpeter et semble donner des résultats satisfaisants pour l’étude des amas de la Galaxie.
Systèmes binaires et multiples

Les systèmes binaires sont constitués de deux étoiles liées gravitationnellement et orbitant l’une autour de l’autre. L’élément le plus brillant est dit primaire et le moins brillant, secondaire. Lorsqu’un système comporte plus de deux composantes il est qualifié de système stellaire multiple.

Les systèmes binaires peuvent être détectés par imagerie, lorsque le télescope parvient à résoudre la paire ; dans ce cas la binaire est dite visuelle. Dans d’autres cas, les deux compagnons ne peuvent être résolus, mais le décalage Doppler-Fizeau des raies spectrales permet de détecter le mouvement orbital de l’une ou des deux étoiles. Dans ce cas la binaire est dite spectroscopique. Si un seul spectre est visible et varie on parle de binaire SB1, si le spectre des deux étoiles est bien visible on parle de binaire SB2. Il est également possible de détecter le mouvement apparent dans le ciel de l’étoile binaire, qui correspond au mouvement orbital de l’étoile primaire si le secondaire est très peu lumineux ; dans ce cas la binaire est dite astrométrique. On parle enfin de binaire interférométrique lorsque le secondaire est détecté par interférométrie.

L’astronomie amateur parle de binaire apparente lorsque deux étoiles éloignées dans l’espace et non liées gravitationnellement se trouvent proches dans le ciel par effet de perspective.
Amas
Article détaillé : Amas stellaire.

Les amas stellaires sont des regroupements locaux d’étoiles liées gravitationnellement et formées en même temps. De ce fait, ils constituent une population de référence pour étudier la durée de vie d’une étoile en fonction de sa taille (voir diagramme de Hertzsprung-Russell). On peut s’en servir pour déterminer l’âge des plus vieilles populations d’étoiles de notre Galaxie.

On distingue les amas ouverts (AO) constitués de quelques dizaines à quelques milliers d’étoiles et généralement de forme quelconque et les amas globulaires (AG) constitués de plusieurs milliers à plusieurs millions d’étoiles.

Les AO sont jeunes, de quelques dizaines à quelques centaines de millions d’années. Parmi les plus vieux, M67 (4,6 milliards d’années comme le Soleil) est aussi parmi les plus gros. Dans notre galaxie, les AO sont riches en métaux (typiquement comme le Soleil). Les AG sont de forme sphérique d’où leur nom. Leurs étoiles sont pauvres en métaux et ils comptent parmi les objets les plus vieux de la Galaxie. Ils se répartissent dans le sphéroïde de la Galaxie qu’on appelle le halo. Leur âge est compris entre environ 10 et 13,5 milliards d’années. Omega du Centaure est parmi les plus gros. Sa population stellaire n’est pas unique ce qui montre qu’il a eu une origine étalée dans le temps permettant la formation de plusieurs d’entre elles (au moins trois). Il est considéré comme pouvant être le résidu d’une galaxie naine ayant été capturée par la Voie lactée. NGC 6397 est au contraire un amas à population stellaire unique avec une abondance en métaux d’un centième de celle du Soleil. L’AG le plus pauvre en métaux connu est M92 avec presque un millième de l’abondance solaire.
Associations

Les associations stellaires sont semblables aux amas, à ceci près qu’elles ne constituent pas un système lié gravitationnellement. Aussi les associations se dispersent-elles au bout d’un certain temps. Exemple d’association : les associations O-B constituées principalement d’étoiles très massives et très chaudes. On peut les considérer comme des petits amas ouverts très jeunes présentant encore beaucoup de gaz ionisé dans le voisinage des étoiles. On les rencontre dans notre Galaxie principalement dans les bras.
Galaxies
Article détaillé : Galaxie.

Une galaxie est un vaste ensemble d’étoiles. Les galaxies diffèrent des amas par leur taille (plusieurs centaines de milliards d’étoiles contre quelques milliers à quelques millions pour les amas stellaires), leur organisation et leur histoire.
Constellations

En observant le ciel nocturne, l’être humain a imaginé que les étoiles les plus brillantes pouvaient constituer des figures. Ces regroupements diffèrent généralement d’une époque à une autre et d’une civilisation à une autre. Les figures devenues traditionnelles, souvent en rapport avec la mythologie grecque, sont appelées constellations.

Les étoiles d’une constellation n’ont a priori rien en commun, si ce n’est d’occuper, vues de la Terre, une position voisine dans le ciel. Elles peuvent être très éloignées les unes des autres. Toutefois, l’Union astronomique internationale a défini une liste normalisée des constellations, attribuant à chacune une région du ciel, afin de faciliter la localisation des objets célestes.
Systèmes planétaires
Article détaillé : Système planétaire.

Les étoiles peuvent être accompagnées de corps gravitant autour d’elles. Ainsi, le Système solaire est composé d’une étoile centrale, le Soleil, accompagné de planètes, comètes, astéroïdes. Depuis 1995, près de 900 planètes ont été découvertes autour d’autres étoiles que le Soleil, faisant perdre au Système solaire son caractère supposé unique. Tous ces systèmes planétaires sont découverts de façon indirecte. La première étoile autour de laquelle des planètes ont été révélées par des mesures vélocimétriques est 51 Peg (observations réalisées à l’OHP avec le spectrographe ÉLODIE). De nombreux autres systèmes planétaires ont depuis été découverts. En raison des limitations actuelles de détection, ils présentent des caractéristiques semblables, avec des planètes géantes sur des orbites très excentriques : on les nomme des « Jupiter chauds ». La majorité de ces étoiles sont plus riches en métaux que le Soleil. Les statistiques sur ces systèmes planétaires permettent de conclure que le Système solaire n’a pour l’instant pas d’équivalent. Depuis l’espace, la traque des systèmes planétaires par photométrie a commencé avec le satellite CoRoT (CNES). Celui-ci a été relayé en 2009 par le satellite américain Kepler.
Notes et références
Notes

   ↑ Jupiter, Saturne et Neptune ont un rayonnement (thermique) intrinsèque de l'ordre du flux reçu du Soleil, voire supérieur, mais celui-ci est émis principalement dans l'infrarouge, étant donnée la faible température de ces objets. Cependant, les planètes surchauffées orbitant près de leur étoile peuvent atteindre des températures de plusieurs milliers de degrés au point que ces objets émettent une fraction non négligeable de rayonnement dans le domaine visible.
   ↑ Le mystère de la nature exacte des étoiles a perduré longtemps, comme en témoignent les deux premiers vers du poème The Star de Jane Taylor, composé au début du dix-neuvième siècle : Twinkle, twinkle, little star, How I wonder what you are.. Ce poème constitue aussi les paroles d'une célèbre berceuse.
   ↑ Séquence que l’on peut retenir par l’astuce mnémotechnique suivante : ce sont les initiales de la phrase anglaise Oh, Be A Fine Girl/Guy, Kiss Me.
   ↑ Sa structure et sa composition sont plus complexes qu’une simple boule de neutrons, ainsi à sa surface on peut trouver une croûte de fer et d’autres éléments.

Références

   Cet article est partiellement ou en totalité issu de l'article intitulé « Masse solaire » (voir la liste des auteurs).

   ↑ Kenneth R. Lang A Companion to Astronomy and Astrophysics Springer, 2006 p. 303
   ↑ (en) The Sun's almost perfectly round shape baffles scientists [archive], phys.org
   ↑ [PDF] (en) Paul A. Crowther et al., The R136 star cluster hosts several stars whose individual masses greatly exceed the accepted 150 M☉ stellar mass limit [archive]
   ↑ (en) BBC News, Astronomers detect 'monster star' [archive] By Jonathan Amos Science correspondent, 21 July 2010
   ↑ (en) C. J. Evans, W. D. Taylor et coll., « The VLT-FLAMES Tarantula Survey », Astronomy & Astrophysics, vol. 530, no 108,‎ 26 mars 2011, p. 21 (DOI 10.1051/0004-6361/201116782)
   ↑ (en) J.-F. Donati et al., The surprising magnetic topology of τ Sco: fossil remnant or dynamo output?, Monthly Notices of the Royal Astronomical Society 370, 629 (2006) Donati et al. Voir en ligne [archive]
   ↑ (en) J. D. Landstreet, Magnetic fields at the surfaces of stars, Astronomy and Astrophysics Review, 4, 35-77 (1992) Landstreet Voir en ligne [archive].
   ↑ L'Univers et Ses Mystères : Épisode 10, de Tony Long, Flight 33 productions, 2007, ép. Épisode 10 (« Vie et Mort d'une étoile »)

DÉFINITION SCIENTIFIQUE ET NUANCE PHYSIQUE.
Jacques Prévert, Comment dessiner un oiseau
https://www.youtube.com/watch?v=8PTUw3i6uv0

MOSAIQUE DE
TAY
La chouette effraie
Revenir en haut Aller en bas
Voir le profil de l'utilisateur http://www.atelier-yannistignard.com
yanis la chouette



Nombre de messages : 7780
Localisation : http://yanis.tignard.free.fr/
Date d'inscription : 09/11/2005

MessageSujet: Re: L'École du Micro d'Argent, Spectre électromagnétique et TAY   Jeu 23 Nov à 3:33

La spectroscopie est l'un des moyens principaux pour les astrophysiciens pour étudier l'Univers. En 1835, Auguste Comte disait dans son Cours de philosophie positive que parmi les choses qui resteraient à jamais hors de portée de la connaissance humaine figurait la composition chimique du Soleil. Il ne vécut pas assez longtemps pour voir en 1865 deux savants allemands, Robert Bunsen et Gustav Kirchhoff analyser pour la première fois la lumière du Soleil et permettre la détermination de la composition chimique de celui-ci. Depuis cette date, la spectroscopie astronomique n'a cessé de progresser et les spectrographes font désormais partie intégrante de tous les observatoires astronomiques du monde.

L'analyse d'un spectre nous apporte une grande quantité d'information sur la source qui a émis la lumière, mais aussi sur la matière se trouvant entre la source et nous.

Historique

De tout temps, les hommes ont observé des arcs-en-ciel lors d'averses. Il faut cependant attendre 1665 pour que Isaac Newton s'intéresse à la question de la décomposition de la lumière au moyen d'un prisme (et de sa recomposition au moyen de la roue qui porte son nom). 150 ans plus tard, en 1814, Joseph von Fraunhofer découvre les raies qui portent son nom dans le spectre du Soleil1. Fraunhofer utilise un réseau de diffraction inventé en 1785 par David Rittenhouse. En 1865, Robert Bunsen et Gustav Kirchhoff (généralisant les travaux de Foucault dès 1845) aperçoivent également des raies en observant des spectres de flamme et, stupéfaction, s'aperçoivent que ces raies se trouvent exactement aux mêmes endroits que celles décrites par Fraunhofer, 50 ans plus tôt, faisant ainsi le lien entre les spectres et la composition chimique des objets observés. Il en déduisit la loi éponyme "un corps ne peut absorber que les radiations qu'il peut émettre" qui aura des conséquences révolutionnaires sur le plan astronomique, nonobstant les affirmations d'Auguste Comte (1842). C'est également l'époque où Dmitri Mendeleïev développe son célèbre Tableau périodique des éléments qui comporte encore de nombreux trous. Les chimistes se lancent alors dans la recherche d'éléments inconnus en étudiant des raies inconnues dans les spectres de flammes de tous les minéraux qui leur tombent sous la main. C'est ainsi que furent découverts le gallium, le germanium... À noter également que l'hélium fut identifié dans le spectre solaire quelques années avant d'être trouvé sur Terre. En effet, l'astronome français Jules Janssen (1824-1907) détecta la raie 5875A (jusqu'alors inconnue en laboratoire) dans le spectre solaire (18 août 1868) au cours de l'éclipse totale à Guntur en Inde. L'astronome britannique Sir J.N. Lockyer proposa la dénomination d'hélium puisque la raie fut détectée dans le spectre de Hélios (Soleil !). En même temps, des recherches en physique (théories du rayonnement, lois de Planck, de Wien, etc.) sur la structure atomique (Rutherford, Bohr...) précisent la nature des quanta, la dépendance du spectre électromagnétique avec la longueur d'onde, due aux différentes transitions de niveaux d'énergie. Fin du XIXe siècle, on s'intéresse également à la qualité de l'éclairage et au lien entre la température et la répartition de l'énergie dans le spectre. La loi de Wien, l'observation du spectre de l'atome d'hydrogène et de ses différentes 'séries' mèneront au développement de la mécanique quantique et au modèle de Bohr de l'atome. Pieter Zeeman découvre que les raies se dédoublent sous l'effet d'un champ magnétique, c'est l'effet Zeeman lié au spin de l'électron.

Les conclusions de Kirchhoff concernant le spectre solaire - le Soleil est composé d'un corps central très chaud, responsable du fond continu du spectre, entouré d'une "atmosphère" dont les couches extérieures moins chaudes et moins denses sont responsables des raies d'absorption, raies sombres sur fond continu brillant - auront des répercussions astronomiques considérables. En effet, appliquée aux étoiles par Huggins (1864 en Angleterre) et par Secchi à Rome, sur bon nombre d'étoiles, la spectroscopie stellaire révèle des similitudes spectrales avec le spectre de l'astre du jour: un fond continu sillonné de raies ou de bandes sombres plus ou moins larges; c'est donc que la constitution de ces étoiles devrait être analogue à celle du Soleil ! Par ailleurs, les progrès en chimie-physique (spectre de l'atome H, études des niveaux d'énergie, etc.) permettent de relier la présence de telle ou telle raie de tel ou tel élément chimique aux conditions physiques (température, pression) à l'intérieur de l'étoile étudiée. On en arrive ainsi à "ranger" les étoiles suivant leurs spectres en fonction de la température de leur atmosphère, et en fonction de leur éclat apparent. Combinée à la loi de Pogson (1856) reliant magnitudes apparente et absolue, l'analyse des spectres des étoiles mènera à leur classification dans un diagramme "type spectral - luminosité" qui portera le nom de diagramme de Hertzsprung-Russell vers 1910 dû à deux astronomes travaillant indépendamment: Ejnar Hertzsprung et Henry Norris Russell. À la fin du XIXe et au début du XXe siècle, on n'avait que très peu d'idée sur la nature "extra-galactique" des objets célestes. C'est ainsi qu'on pensait avoir détecté en 1885 la présence d'une "nova" (étoile nouvelle, en réalité il s'agissait de la supernova SN 1885A !) dans la région centrale de Messier 31, la célèbre "nébuleuse" d'Andromède), dont on pensait qu'elle faisait partie de la Voie Lactée. Les recherches de Ms. Henrietta Leavitt, Shapley, Slipher, et autres Hubble consistaient à mettre en évidence que ces lointaines nébuleuses étaient en réalité des "univers-îles". En 1929, Edwin Hubble, analysant les spectres de quelques "nébuleuses" lointaines, observe que leur spectre (de l'hydrogène ou d'autres éléments chimiques) présente un décalage vers le rouge par comparaison avec un spectre d'une source de référence; et ce décalage était d'autant plus grand que l'objet visé était plus loin, équivalent à l'"effet Doppler" qui venait d'être signalé: c'est la future Loi de Hubble. C'est la base du modèle cosmologique actuel : le Big bang suivi d'une expansion de l'Univers toujours en cours. L'effet Zeeman permit à George Ellery Hale de montrer l'origine magnétique des taches solaires en réalisant les premiers magnétogrammes (en). La spectroscopie permet également l'étude de la composition des atmosphères planétaires2 et la composition isotopique des particules émises par les comètes3.
Les différents spectrographes

Le spectrographe à longue fente, qui est identique à ceux qu'on utilise dans les autres sciences, et généralement de faible et moyenne résolution spectrale.
Le spectrographe échelle qui permet d'optimiser l'utilisation de la surface du détecteur, et qui permet d'atteindre une très haute résolution spectrale.
Le spectrographe à fibre optique qui utilise une fibre optique à la place d'une fente.
Le spectrographe multi-objets qui permet, grâce à des masques multi-fentes ou à des fibres d'observer plusieurs objets en même temps.
Le spectrographe à transformée de Fourier.
Le spectrographe à unité intégrale de champ.

Exemples

SOPHIE, ÉLODIE, CORALIE, HARPS, HARPS-N et le futur ESPRESSO, entre autres, sont des spectrographes destinés à la recherche d'exoplanètes.
UVES est un spectrographe échelle dans l'optique, installé au VLT.
FORS1 et FORS2 sont deux spectrographes optiques, également installés au VLT, et qui permettent de faire aussi bien de la spectroscopie longue-fente et multi-objets.
FLAMES est un spectrographe multi-objets, multi-fibres, au VLT.

Notes et références

↑ En fait, il les redécouvre; William Hyde Wollaston les avait déjà observées en 1802 mais n'en avait pas poussé l'étude plus loin.
↑ y compris la nôtre pour l'étude des gaz à effet de serre et le trou dans la couche d'ozone.
↑ Notamment pour la validation de la théorie cométaire de l'origine de l'eau sur la Terre.

Annexes
Articles connexes

Type spectral

Liens externes

Les spectres en bref [archive]
Histoire de la spectroscopie [archive]
(fr) Vidéo-conférence sur le thème : La spectroscopie : un formidable outil pour comprendre l’univers ? [archive] (intervention du 5 mai 2009 de Patrick Boissé, astrophysicien à l'IAP)

Jean de La Fontaine: Le corbeau et le renard (1668)
A classic fable all French children (and adults) know.
Le Corbeau et le Renard

Maître Corbeau, sur un arbre perché,
Tenait en son bec un fromage.
Maître Renard, par l'odeur alléché,
Lui tint à peu près ce langage :
"Hé ! bonjour, Monsieur du Corbeau.
Que vous êtes joli ! que vous me semblez beau !
Sans mentir, si votre ramage
Se rapporte à votre plumage,
Vous êtes le Phénix des hôtes de ces bois. "
A ces mots le Corbeau ne se sent pas de joie ;
Et pour montrer sa belle voix,
Il ouvre un large bec, laisse tomber sa proie.
Le Renard s'en saisit, et dit : "Mon bon Monsieur,
Apprenez que tout flatteur
Vit aux dépens de celui qui l'écoute :
Cette leçon vaut bien un fromage, sans doute. "
Le Corbeau, honteux et confus,
Jura, mais un peu tard, qu'on ne l'y prendrait plus.

et

Charles Baudelaire: L'invitation au voyage (1857).
Charles Baudelaire publishes Les Fleurs du mal in 1857.
L'invitation au voyage

Mon enfant, ma soeur,
Songe à la douceur
D'aller là-bas vivre ensemble !
Aimer à loisir,
Aimer et mourir
Au pays qui te ressemble !
Les soleils mouillés
De ces ciels brouillés
Pour mon esprit ont les charmes
Si mystérieux
De tes traîtres yeux,
Brillant à travers leurs larmes.

Là, tout n'est qu'ordre et beauté,
Luxe, calme et volupté.

Des meubles luisants,
Polis par les ans,
Décoreraient notre chambre ;
Les plus rares fleurs
Mêlant leurs odeurs
Aux vagues senteurs de l'ambre,
Les riches plafonds,
Les miroirs profonds,
La splendeur orientale,
Tout y parlerait
À l'âme en secret
Sa douce langue natale.

Là, tout n'est qu'ordre et beauté,
Luxe, calme et volupté.

Vois sur ces canaux
Dormir ces vaisseaux
Dont l'humeur est vagabonde ;
C'est pour assouvir
Ton moindre désir
Qu'ils viennent du bout du monde.
- Les soleils couchants
Revêtent les champs,
Les canaux, la ville entière,
D'hyacinthe et d'or ;
Le monde s'endort
Dans une chaude lumière.

Là, tout n'est qu'ordre et beauté,
Luxe, calme et volupté.

The Alan Parsons Project- Eye in the Sky
https://www.youtube.com/watch?v=NNiie_zmSr8

The Alan Parsons Project - Don't Answer Me...
https://www.youtube.com/watch?v=JLvFbBR4XOg
Dans certains actes civile, la grande muette sait agir !
Bravo, Mesdames et Messieurs !

Alan Parsons Project - "Old and Wise"
https://www.youtube.com/watch?v=-4HI1_LTWIk

MOSAÏQUE DE L’HUMANITÉ ET DE CES VOLONTÉS...
I AM DONC JE SUIS !
PAR TAY
La chouette effraie.


Revenir en haut Aller en bas
Voir le profil de l'utilisateur http://www.atelier-yannistignard.com
Contenu sponsorisé




MessageSujet: Re: L'École du Micro d'Argent, Spectre électromagnétique et TAY   

Revenir en haut Aller en bas
 
L'École du Micro d'Argent, Spectre électromagnétique et TAY
Voir le sujet précédent Voir le sujet suivant Revenir en haut 
Page 1 sur 1
 Sujets similaires
-
» Canada- Ségrégation raciale: Débat pour l’ouverture d’une école noire
» Blog de Marc Bazin: Combien d'argent pour «sauver» Haïti ?
» Dossier Corruption 2:L'ONU et l'argent vole par JC Duvalier
» Haiti en Marche: L'argent de la drogue et les élections!
» La salle de l'argent

Permission de ce forum:Vous ne pouvez pas répondre aux sujets dans ce forum
Le clans des mouettes :: Le clans des mouettes-
Sauter vers: