Le clans des mouettes

ainsi est la force.
AccueilAccueil  FAQFAQ  RechercherRechercher  S'enregistrerS'enregistrer  MembresMembres  GroupesGroupes  Connexion  

Partagez | 

 Grains of Silica, Sand, Geologists et Y'becca

Voir le sujet précédent Voir le sujet suivant Aller en bas 
yanis la chouette

Nombre de messages : 6019
Localisation : http://yanis.tignard.free.fr/
Date d'inscription : 09/11/2005

MessageSujet: Grains of Silica, Sand, Geologists et Y'becca   Mar 2 Mai à 9:14

the quartz grains and increase the percentage of silica ?

Sand is a naturally occurring granular material composed of finely divided rock and mineral particles. It is defined by size, being finer than gravel and coarser than silt. Sand can also refer to a textural class of soil or soil type; i.e. a soil containing more than 85% sand-sized particles by mass.[1]

The composition of sand varies, depending on the local rock sources and conditions, but the most common constituent of sand in inland continental settings and non-tropical coastal settings is silica (silicon dioxide, or SiO2), usually in the form of quartz. The second most common type of sand is calcium carbonate, for example aragonite, which has mostly been created, over the past half billion years, by various forms of life, like coral and shellfish. For example, it is the primary form of sand apparent in areas where reefs have dominated the ecosystem for millions of years like the Caribbean.

Sand is a non renewable resource over human timescales, and sand suitable for making concrete is in high demand.

Heavy minerals (dark) in a quartz beach sand (Chennai, India).
Sand from Coral Pink Sand Dunes State Park, Utah. These are grains of quartz with a hematite coating providing the orange color.
Sand from Pismo Beach, California. Components are primarily quartz, chert, igneous rock and shell fragments.

In terms of particle size as used by geologists, sand particles range in diameter from 0.0625 mm (or  1⁄16 mm) to 2 mm. An individual particle in this range size is termed a sand grain. Sand grains are between gravel (with particles ranging from 2 mm up to 64 mm) and silt (particles smaller than 0.0625 mm down to 0.004 mm). The size specification between sand and gravel has remained constant for more than a century, but particle diameters as small as 0.02 mm were considered sand under the Albert Atterberg standard in use during the early 20th century. A 1953 engineering standard published by the American Association of State Highway and Transportation Officials set the minimum sand size at 0.074 mm. A 1938 specification of the United States Department of Agriculture was 0.05 mm.[2] Sand feels gritty when rubbed between the fingers (silt, by comparison, feels like flour).

ISO 14688 grades sands as fine, medium and coarse with ranges 0.063 mm to 0.2 mm to 0.63 mm to 2.0 mm. In the United States, sand is commonly divided into five sub-categories based on size: very fine sand ( 1⁄16 –  1⁄8 mm diameter), fine sand ( 1⁄8 mm –  1⁄4 mm), medium sand ( 1⁄4 mm –  1⁄2 mm), coarse sand ( 1⁄2 mm – 1 mm), and very coarse sand (1 mm – 2 mm). These sizes are based on the Krumbein phi scale, where size in Φ = -log2D; D being the particle size in mm. On this scale, for sand the value of Φ varies from −1 to +4, with the divisions between sub-categories at whole numbers.
Close up of black volcanic sand from Perissa, in Santorini, Greece

The most common constituent of sand, in inland continental settings and non-tropical coastal settings, is silica (silicon dioxide, or SiO2), usually in the form of quartz, which, because of its chemical inertness and considerable hardness, is the most common mineral resistant to weathering.

The composition of mineral sand is highly variable, depending on the local rock sources and conditions. The bright white sands found in tropical and subtropical coastal settings are eroded limestone and may contain coral and shell fragments in addition to other organic or organically derived fragmental material, suggesting sand formation depends on living organisms, too.[3] The gypsum sand dunes of the White Sands National Monument in New Mexico are famous for their bright, white color. Arkose is a sand or sandstone with considerable feldspar content, derived from weathering and erosion of a (usually nearby) granitic rock outcrop. Some sands contain magnetite, chlorite, glauconite or gypsum. Sands rich in magnetite are dark to black in color, as are sands derived from volcanic basalts and obsidian. Chlorite-glauconite bearing sands are typically green in color, as are sands derived from basaltic (lava) with a high olivine content. Many sands, especially those found extensively in Southern Europe, have iron impurities within the quartz crystals of the sand, giving a deep yellow color. Sand deposits in some areas contain garnets and other resistant minerals, including some small gemstones.
An electron micrograph showing grains of sand
Pitted sand grains from the Western Desert, Egypt. Pitting is a consequence of wind transportation.

The study of individual grains can reveal much historical information as to the origin and kind of transport of the grain.[4] Quartz sand that is recently weathered from granite or gneiss quartz crystals will be angular. It is called grus in geology or sharp sand in the building trade where it is preferred for concrete, and in gardening where it is used as a soil amendment to loosen clay soils. Sand that is transported long distances by water or wind will be rounded, with characteristic abrasion patterns on the grain surface. Desert sand is typically rounded.

People who collect sand as a hobby are known as arenophiles. Organisms that thrive in sandy environments are psammophiles.[5]
Sand sorting tower at a gravel pit.

Agriculture: Sandy soils are ideal for crops such as watermelons, peaches and peanuts, and their excellent drainage characteristics make them suitable for intensive dairy farming.
Aquaria: Sand makes a low cost aquarium base material which some believe is better than gravel for home use. It is also a necessity for saltwater reef tanks, which emulate environments composed largely of aragonite sand broken down from coral and shellfish.
Artificial reefs: Geotextile bagged sand can serve as the foundation for new reefs.
Artificial islands in the Persian Gulf.
Beach nourishment: Governments move sand to beaches where tides, storms or deliberate changes to the shoreline erode the original sand.[6]
Brick: Manufacturing plants add sand to a mixture of clay and other materials for manufacturing bricks.
Cob: Coarse sand makes up as much as 75% of cob.
Concrete: Sand is often a principal component of this critical construction material.
Glass: Sand is the principal component in common glass.
Hydraulic fracturing: A drilling technique for natural gas, which uses rounded silica sand as a "proppant", a material to hold open cracks that are caused by the hydraulic fracturing process.
Landscaping: Sand makes small hills and slopes (golf courses would be an example).
Mortar: Sand is mixed with masonry cement or Portland cement and lime to be used in masonry construction.
Paint: Mixing sand with paint produces a textured finish for walls and ceilings or non-slip floor surfaces.
Railroads: Engine drivers and rail transit operators use sand to improve the traction of wheels on the rails.
Recreation. Playing with sand is a favorite beach time activity. One of the most beloved uses of sand is to make sometimes intricate, sometimes simple structures known as sand castles. Such structures are well known for their impermanence. Sand is also used in children's play. Special play areas enclosing a significant area of sand, known as sandboxes, are common on many public playgrounds, and even at some single family homes.
Roads: Sand improves traction (and thus traffic safety) in icy or snowy conditions.
Sand animation: Performance artists draw images in sand. Makers of animated films use the same term to describe their use of sand on frontlit or backlit glass.
Sand casting: Casters moisten or oil molding sand, also known as foundry sand and then shape it into molds into which they pour molten material. This type of sand must be able to withstand high temperatures and pressure, allow gases to escape, have a uniform, small grain size and be non-reactive with metals.
Sand castles: Shaping sand into castles or other miniature buildings is a popular beach activity.
Sandbags: These protect against floods and gunfire. The inexpensive bags are easy to transport when empty, and unskilled volunteers can quickly fill them with local sand in emergencies.
Sandblasting: Graded sand serves as an abrasive in cleaning, preparing, and polishing.
Thermal weapon: While not in widespread use anymore, sand used to be heated and poured on invading troops in the classical and medieval time periods.
Water filtration: Media filters use sand for filtering water.
Wuḍūʾ: the Islamic procedure for washing parts of the body.
Zoanthid "skeletons": Animals in this order of marine benthic cnidarians related to corals and sea anemones, incorporate sand into their mesoglea for structural strength, which they need because they lack a true skeleton.

Resources and environmental concerns

Only some sands are suitable for the construction industry, for example for making concrete. Because of the growth of population and of cities and the consequent construction activity there is a huge demand for these special kinds of sand, and natural sources are running low. In 2012 French director Denis Delestrac made a documentary called "Sand Wars" about the impact of the lack of construction sand. It shows the ecological and economic effects of both legal and illegal trade in construction sand.[7][8][9]

Sand's many uses require a significant dredging industry, raising environmental concerns over fish depletion, landslides, and flooding. Countries such as China, Indonesia, Malaysia and Cambodia ban sand exports, citing these issues as a major factor.[10] It is estimated that the annual consumption of sand and gravel is 40 billion tons and sand is a $70 billion global industry.[11]

While sand is generally non-toxic, sand-using activities such as sandblasting require precautions. Bags of silica sand used for sandblasting now carry labels warning the user to wear respiratory protection to avoid breathing the resulting fine silica dust. Safety data sheets for silica sand state that "excessive inhalation of crystalline silica is a serious health concern".[12]

In areas of high pore water pressure, sand and salt water can form quicksand, which is a colloid hydrogel that behaves like a liquid. Quicksand produces a considerable barrier to escape for creatures caught within, who often die from exposure (not from submersion) as a result.
See also
Wikiquote has quotations related to: Sand

Aggregate (geology)
Construction aggregate
Desert sand (color)
Dry quicksand
Energetically modified cement (EMC)
Heavy mineral sands ore deposits
Oil sands
Particle size
Revolving rivers
Sand island
Sand rat
Sand theft
Singing sand
White Sands National Monument


Glossary of terms in soil science. (PDF). Ottawa: Agriculture Canada. 1976. p. 35. ISBN 0662015339.
Urquhart, Leonard Church, "Civil Engineering Handbook" McGraw-Hill Book Company (1959) p. 8-2
Seaweed also plays a role in the formation of sand. Susanscott.net (1 March 2002). Retrieved on 24 November 2011.
Krinsley,D.H.,Smalley,I.J. 1972. Sand. American Scientist 60, 286-291
"Psammophile". Merriam-Webster.com. Retrieved 27 January 2016.
"Importing Sand, Glass May Help Restore Beaches". NPR.org. 17 July 2007.
See Sand Wars teaser here.
Simon Ings (26 April 2014). "The story of climate change gets star treatment". New Scientist: 28–9.
Strände in Gefahr? Arte Future, last updated 23 April 2014
"The hourglass effect". The Economist. 8 October 2009. Retrieved 14 October 2009.
Beiser, Vince (26 March 2015). "The Deadly Global War for Sand". Wired (website). Retrieved 26 March 2015.

Silica sand MSDS. Simplot (13 March 2011). Retrieved on 24 November 2011.

External links
Look up sand in Wiktionary, the free dictionary.

Media related to Sand at Wikimedia Commons

Beach Sand: What It Is, Where It Comes From and How It Gets Here Beaufort County, SC
Wikisource-logo.svg Beach, Chandler B., ed. (1914). "Sand". The New Student's Reference Work. Chicago: F. E. Compton and Co.


v t e

Geotechnical engineering

v t e

Coastal geography
Authority control

GND: 4051537-0 NDL: 00571682


Silt is granular material of a size between sand and clay, whose mineral origin is quartz[1] and feldspar. Silt may occur as a soil (often mixed with sand or clay) or as sediment mixed in suspension with water (also known as a suspended load) in a body of water such as a river. It may also exist as soil deposited at the bottom of a water body. Silt has a moderate specific area with a typically non-sticky, plastic feel. Silt usually has a floury feel when dry, and a slippery feel when wet. Silt can be visually observed with a hand lens.


Silt is created by a variety of physical processes capable of splitting the generally sand-sized quartz crystals of primary rocks by exploiting deficiencies in their lattice.[2] These involve chemical weathering of rock[3] and regolith, and a number of physical weathering processes such as frost shattering[4] and haloclasty.[5] The main process is abrasion through transport, including fluvial comminution, aeolian attrition and glacial grinding.[6] It is in semi-arid environments[7] that substantial quantities of silt are produced. Silt is sometimes known as "rock flour" or "stone dust", especially when produced by glacial action. Mineralogically, silt is composed mainly of quartz and feldspar. Sedimentary rock composed mainly of silt is known as siltstone. Liquefaction created by a strong earthquake is silt suspended in water that is hydrodynamically forced up from below ground level.
Grain size criteria

In the Udden–Wentworth scale (due to Krumbein), silt particles range between 0.0039 and 0.0625 mm, larger than clay but smaller than sand particles. ISO 14688 grades silts between 0.002 mm and 0.063 mm. In actuality, silt is chemically distinct from clay, and unlike clay, grains of silt are approximately the same size in all dimensions; furthermore, their size ranges overlap. Clays are formed from thin plate-shaped particles held together by electrostatic forces, so present a cohesion. According to the U.S. Department of Agriculture Soil Texture Classification system, the sand-silt distinction is made at the 0.05 mm particle size.[8] The USDA system has been adopted by the Food and Agriculture Organization (FAO). In the Unified Soil Classification System (USCS) and the AASHTO Soil Classification system, the sand-silt distinction is made at the 0.075 mm particle size (i.e., material passing the #200 sieve). Silts and clays are distinguished mechanically by their plasticity.
A silted lake located in Eichhorst, Germany
Environmental impacts

Silt is easily transported in water or other liquid and is fine enough to be carried long distances by air in the form of dust. Thick deposits of silty material resulting from deposition by aeolian processes are often called loess. Silt and clay contribute to turbidity in water. Silt is transported by streams or by water currents in the ocean. When silt appears as a pollutant in water the phenomenon is known as siltation.

Silt, deposited by annual floods along the Nile River, created the rich, fertile soil that sustained the Ancient Egyptian civilization. Silt deposited by the Mississippi River throughout the 20th century has decreased due to a system of levees, contributing to the disappearance of protective wetlands and barrier islands in the delta region surrounding New Orleans.[9]

In south east Bangladesh, in the Noakhali district, cross dams were built in the 1960s whereby silt gradually started forming new land called "chars". The district of Noakhali has gained more than 28 square miles (73 km2) of land in the past 50 years.

With Dutch funding, the Bangladeshi government began to help develop older chars in the late 1970s, and the effort has since become a multi-agency operation building roads, culverts, embankments, cyclone shelters, toilets and ponds, as well as distributing land to settlers. By fall 2010, the program will have allotted some 27,000 acres (100 km2) to 21,000 families.[10]

A main source of silt in urban rivers is disturbance of soil by construction activity.[citation needed] A main source in rural rivers is erosion from plowing of farm fields, clearcutting or slash and burn treatment of forests.[citation needed]

The fertile black silt of the Nile river's banks is a symbol of rebirth, associated with the Egyptian god Anubis.[11]
See also
Wikimedia Commons has media related to Silt.

Erosion control
Nonpoint source pollution
Sediment control
Silt fence


Assallay,A.M.,Rogers,C.D.F.,Smalley,I.J.,Jefferson,I. 1998. Silt: 2-62um,9-4phi. Earth Science Reviews 45, 61-88
Moss, A J; Green, P (1975). "Sand and silt grains: Predetermination of their formation and properties by microfractures in quartz". Australian Journal of Earth Sciences. 22 (4): 485–495. Bibcode:1975AuJES..22..485M. doi:10.1080/00167617508728913.
Nahon, D; Trompette, R (1982). "Origin of siltstones:glacial grinding versus weathering". Sedimentology. 29: 25–35. Bibcode:1982Sedim..29...25N. doi:10.1111/j.1365-3091.1982.tb01706.x.
Lautridou, J P; Ozouf, J C (1982). "Experimental frost shattering: 15 years of research at the Centre de Geomorphologie du CNRS". Progress in Physical Geography. 6 (2): 215–232. doi:10.1177/030913338200600202.
Goudie, A S; Viles, H A (1995). "The nature and pattern of debris liberated by salt weathering: a laboratory study". Earth Surface Processes and Landforms. 9: 95–98. Bibcode:1984ESPL....9...95G. doi:10.1002/esp.3290090112.
Wright, J S; Smith, B J; Whalley W B (1998). "Mechanisms of loess-sized quartz silt production and their relative effectiveness: laboratory simulations". Geomorphology. 45: 15–34. Bibcode:1998Geomo..23...15W. doi:10.1016/S0169-555X(97)00084-6.
Haberlah, D (2007). "A call for Australian loess". AREA. 39 (2): 224–229. doi:10.1111/j.1475-4762.2007.00730.x.
"Particle Size (618.43)". National Soil Survey Handbook Part 618 (42-55) Soil Properties and Qualities. United States Department of Agriculture - Natural Resource Conservation Service. Retrieved 2006-05-31.
"Mississippi River". USGS Biological Resources. Archived from the original on 2005-10-28. Retrieved 2006-03-08.
https://web.archive.org/web/20100212215115/http://www.pulitzercenter.org/openitem.cfm?id=1973. Archived from the original on February 12, 2010. Retrieved October 22, 2009. Missing or empty |title= (help)

Hart 1986, p. 22; Freeman 1997, p. 91.


v t e

Geotechnical engineering

La chouette effraie
Revenir en haut Aller en bas
Voir le profil de l'utilisateur http://www.atelier-yannistignard.com
yanis la chouette

Nombre de messages : 6019
Localisation : http://yanis.tignard.free.fr/
Date d'inscription : 09/11/2005

MessageSujet: Re: Grains of Silica, Sand, Geologists et Y'becca   Mar 2 Mai à 9:17

Vénus envahit les Pléiades

traduction de Didier Jamet

paru le 02 avril 2012

Prenez garde, Sept Soeurs, Vénus arrive ! Cette semaine, la deuxième planète du système solaire passera au beau milieu de l'amas des Pléiades.

C'est une rare conjonction de début de nuit facile à observer à l'oeil nu, mais encore mieux aux jumelles ou dans un petit télescope.

L'action commence dès ce soir 2 avril, avec Vénus qui pénètrera dans le périmètre de ce petit chariot d'étoiles qui n'est pas sans rappeler la Grande Ourse.

Regardez vers l'ouest peu après le coucher du Soleil et cherchez Vénus. Puis passez la zone au scanner avec vos jumelles. Vous verrez tout de suite de quoi il s'agit. Le meilleur moment pour observer cette conjonction sera demain soir mardi 3 avril, lorsque la brillante planète glissera juste au sud des Pléiades. Vénus sortira par le timon mercredi 4. Un tel passage de Vénus au coeur des Pléiades ne se produit que tous les 8 ans.

Dire que c'est le mariage de la carpe et du lapin serait un euphémisme. Les Pléiades sont très peu lumineuses, et on ne les remarque souvent qu'à la périphérie du champ de vision. Vénus, c'est tout le contraire. Suffisamment brillante pour projeter des ombres, elle rayonne dans le ciel et attire immanquablement l'attention.

Les Pléiades, également appelées les « Sept Soeurs », sont un amas de jeunes étoiles. Elles se sont formées il y a tout juste quelque 100 millions d'années, alors que les dinosaures régnaient sur la Terre. Les membres les plus brillants sont d'une belle couleur bleutée, et présentent un diamètre environ 5 fois plus grand que celui de notre Soleil.

Du fait de leur distance, environ 400 années-lumière, les Pléiades sont à la limite de la visibilité à l'oeil nu. Lorsque Vénus les rejoint, c'est comme si une des Pléiades avait explosé en supernova. Les épais nuages de Vénus réfléchissent tant de lumière que la planète est sans rivale dans le ciel de nuit, à l'exception de la Lune bien sûr. En comparaison, les Pléiades pourraient paraître chétives, mais en réalité, elles sont d'une délicate beauté. Mais le mieux, c'est encore de voir par vous-même.

#pleiades #venus #conjonction
> Cliquez ici pour poster le premier commentaire <

article précédent
Mystérieux objets en marge du spectre électromagnétique
article suivant
Superlune dans le ciel de ce week-end

Version française de Science@NASA
Auteur original : Docteur Tony Phillips
Crédit : NASA Science
[Vénus s'approchant des Pléiades le 31 mars 2012]
Revenir en haut Aller en bas
Voir le profil de l'utilisateur http://www.atelier-yannistignard.com
yanis la chouette

Nombre de messages : 6019
Localisation : http://yanis.tignard.free.fr/
Date d'inscription : 09/11/2005

MessageSujet: Re: Grains of Silica, Sand, Geologists et Y'becca   Mar 2 Mai à 9:21

Un croissant de Lune d'une fatale beauté

traduction de Didier Jamet

paru le 07 avril 2008

C’était le 8 mars 2008, il y a quasiment un mois jour pour jour. Dans un coin reculé du Kansas, le Soleil en train de se coucher et le crépuscule allant s’approfondissant agirent comme un aimant sur le photographe Doug Zubenel tandis qu’il roulait à travers la campagne. Il savait que quelque chose de très photogénique était sur le point de se produire.

À une intersection, il s’engagea sur une route poussiéreuse qu’il ne connaissait pas mais qui l’amenait droit vers le Soleil. « Aveuglé par le Soleil, je n’ai pas vu les rambardes en béton d’un petit pont qui enjambait une rivière tout aussi modeste. Lorsque je suis revenu à moi, je n’ai pu que constater que j’avais plié ma voiture ! » Zubenel s’est extrait de l’épave, a appelé une dépanneuse, et en attendant qu’elle arrive, a pris la photo qui inaugure cet article, en haute de la colonne de droite.

« C’était un magnifique croissant de Lune tout juste âgé d’un jour » se souvient Zubenel. « Il était en bien meilleur état que ma voiture ! »

Cette scène, si belle qu’elle en est devenue périlleuse, va se reproduire deux fois dans les heures à venir :

Lundi 7 avril au soir, un croissant de 6% va se matérialiser assez bas sur l’horizon ouest après le coucher du Soleil. Contre le bleu cobalt du crépuscule naissant, la Lune révèlera toute la magnificence de sa lumière cendrée, comme un fantôme de pleine Lune pincé entre les cornes du croissant étincelant. Il y a 500 ans de cela, Léonard de Vinci fut le premier à comprendre l’origine de cette pale lueur : c’est en réalité la lumière de la Terre qui se reflète sur les terrains lunaires encore plongés dans la nuit, lesquels bénéficient d’un « clair de Terre » particulièrement intense. La lumière cendrée est sans conteste un des plus beaux spectacles célestes qu’il soit donné d’observer.

Mais le meilleur est encore à venir...

Mardi soir, le 8 avril, un croissant de Lune de 12% sera très proche de l’amas des Pléiades. La Lune et les Pléiades sembleront vraiment très proches, même si en réalité plus de 400 années-lumière les séparent...

Egalement connues sous l’appellation des sept soeurs, les Pléiades sont un amas de jeunes étoiles. Les sept étoiles les plus brillantes de cet amas de beautés à l’éclat blanc mâtiné de bleu forment une sorte de petit chariot qui n’est pas sans rappeler ceux de la petite et de la grande ourse, sauf qu’il est ramassé dans un espace pas plus grand que celui de la pleine Lune (un demi degré d’arc). En dépit de leur grande distance, les Pléiades sont visibles à l’oeil nu, même depuis les cieux des villes encombrés de pollutions en tous genres.

Le 8 avril, la Lune vous mènera directement aux Pléiades. N’oubliez pas de vous munir d’une paire de jumelles. Examinez systématiquement le ciel à proximité de la Lune, et vous ne manquerez pas cet amas de dizaines d’étoiles à l’éclat vif comme celui de gemmes. Mais la Lune ne sera pas mal non plus, révélant à vos optiques ses surfaces cratérisées sous le clair de Terre.

Tout comme le soir précédent, le meilleur moment pour observer sera peu après le coucher du Soleil, plein ouest.

Et notre ami Doug Zubenel dans tout ça ? « J’ai une nouvelle voiture, et je vais tâcher de renouveler mes exploits, enfin pas pour la voiture bien sûr, mais pour la Lune ! » assure-t-il. Une mésaventure que Doug a souhaité faire partager au plus grand nombre, pour rappeler que la passion ne doit jamais faire oublier la prudence !

> Cliquez ici pour poster le premier commentaire <

article précédent
Le cycle solaire 23 n’est pas mort, il tache encore
article suivant
La sonde Phoenix arrive sur Mars

Version française de Science@NASA
Auteur original : Docteur Tony Phillips
Crédit : NASA Science
Revenir en haut Aller en bas
Voir le profil de l'utilisateur http://www.atelier-yannistignard.com
yanis la chouette

Nombre de messages : 6019
Localisation : http://yanis.tignard.free.fr/
Date d'inscription : 09/11/2005

MessageSujet: Re: Grains of Silica, Sand, Geologists et Y'becca   Mar 2 Mai à 9:22

Beta Ursae Majoris
Beta Ursae Majoris
(β UMa / β Ursae Majoris)
Description de l'image Ursa major star name.png.

Époque J2000.0
Données d'observation Ascension droite 11h 01m 50,5s
Déclinaison +56° 22′ 57″
Constellation Grande Ourse
Magnitude apparente (V) +2,34
Caractéristiques Type spectral A1V
Indice U-B 0,01
Indice B-V -0,02
Variabilité suspectée
Astrométrie Vitesse radiale -12 km/s
Mouvement propre μα = 81,66 mas/a
μδ = 33,74 mas/a
Parallaxe 41,07 ± 0,60 mas
Distance 79 ± 1 al
(24,3 ± 0,4 pc)
Magnitude absolue 0,41
Caractéristiques physiques Masse 3 M☉
Rayon 2 R☉
Luminosité 69 L☉
Température 9 800 K

Autres désignations

Mérak, Mérakh, β UMa, 48 UMa (Flamsteed), HR 4295, HD 95418, SAO 27876, BD+57 1302, FK5 416, HIP 53910

modifier Consultez la documentation du modèle

Beta Ursae Majoris (β UMa / β Ursae Majoris, Bêta de la Grande Ourse) est une étoile dans la constellation de la Grande Ourse. Elle est aussi appelée par son nom traditionnel, Mérak.

Elle est plus familière aux observateurs de l'hémisphère nord comme étant une des « étoiles de pointage » du Chariot : prolonger une ligne imaginaire entre Mérak et l'étoile voisine Dubhé permet en effet de retrouver la position de l'étoile polaire (α Ursae Minoris). C'est également une des cinq étoiles de l'astérisme du Chariot qui constitue une partie d'un amas lâche appelé le courant d'étoiles de la Grande Ourse, partageant la même zone de l'espace et non seulement la même zone du ciel observé.

Pour les étoiles qui sont du même type que Mérak, cette dernière est une étoile typique dans le diagramme de Hertzsprung-Russell, bien qu'elle soit légèrement plus chaude, plus grande et beaucoup plus brillante que le Soleil. Elle se différencie du fait que l'étoile est entourée par un disque de poussière, plus proche que celui découvert autour de Fomalhaut et plus spécialement près de Véga. Aucune planète gravitant autour de Mérak n'a été découverte mais le présence de poussière indique qu'il pourrait en exister une, ou du moins, qui serait en train de se former.

Son nom est dérivé de l'arabe maraqq, voulant dire « échine » (de l'ours).
Voir aussi

Liste d'étoiles de la Grande Ourse

Liens externes

(en) Beta Ursae Majoris [archive] sur la base de données Simbad du Centre de données astronomiques de Strasbourg.
(en) James B. Kaler, « Merak » [archive], sur Stars
Revenir en haut Aller en bas
Voir le profil de l'utilisateur http://www.atelier-yannistignard.com
yanis la chouette

Nombre de messages : 6019
Localisation : http://yanis.tignard.free.fr/
Date d'inscription : 09/11/2005

MessageSujet: Re: Grains of Silica, Sand, Geologists et Y'becca   Mar 2 Mai à 9:57


Grains of Silica, Sand, Geologists et Y'becca and SILICA:The velamen of an orchid, Sand, Geologists et Y'becca


Bouddhisme mahāyāna
Avec le Mahāyāna, la Bouddhéité multiplie ses visages et ses moyens…

Le bouddhisme mahāyāna est un terme sanskrit ( महायान ) signifiant « grand véhicule » (chinois : 大乘, dàchéng ; japonais : 大乗, daijō ; vietnamien : Đại Thừa ; coréen : 대승, dae-seung). Le bouddhisme mahāyāna apparaît vers le début de notre ère dans le Nord de l’Inde et dans l'Empire kouchan, d’où il se répand rapidement au Tarim et en Chine, avant de se diffuser dans le reste de l’Extrême-Orient. Des moines du bouddhisme chan chinois l'exportent avec l'écriture et de nombreux aspects de la culture chinoise, d'abord en Corée (bouddhisme son) en 372, puis au Japon (bouddhisme zen) à partir du Ve siècle, se mêlant un peu plus à chaque étape avec les croyances locales.

Le vajrayāna, sa forme tantrique, apparaît en Inde avant le IVe siècle, pénètre au Tibet, sous le règne de Songtsen Gampo entre le VIIe siècle et le VIIIe siècle, sous l'influence de ses épouses, la princesse Bhrikuti du Népal et la princesse Wencheng de Chine. Il se répandra ensuite en Mongolie au XIIIe siècle, sous l'impulsion d'Ögödei, conseillé par le Khitan, Yelü Chucai. puis à l'ensemble de l'empire sino-mongol de la Dynastie Yuan sous le règne de Kubilaï Khan.


1 Caractéristiques
2 Rapport au Hīnayāna
3 Origines
4 Diffusion
5 Enseignement
6 Textes
6.1 Quelques textes importants
7 Branches
8 Conclusion
9 Notes et références
10 Bibliographie
11 Voir aussi
11.1 Articles connexes
11.2 Liens externes


Voici les enseignements qui distinguent le mahāyāna :

La doctrine de la vacuité, suivant les sutras dits de la prajnaparamita, d'où éclosent, principalement, les écoles philosophiques madhyamaka et cittamātra.
La quête de l'Éveil (non plus seulement du nirvāṇa) dans la motivation altruiste et universaliste du bodhicitta, que développe le bodhisattva jusqu'à la bouddhéité complète. Pour cette raison le mahāyāna peut aussi être appelé bodhisattvayāna, où l'on parcourt les dix ou treize bhumis, étapes de la voie bodhisattvique; ou encore pāramitāyāna où l'on cultive les six paramitas.
La reconnaissance et l'actualisation de la nature-de-bouddha présente en chacun, suivant les sūtras dits du tathagatagarbha, développée en dialectique avec la doctrine du trikāya, où le dharmakāya, «corps de réalité» des éveillés, est identifié à l'essence de tous les phénomènes manifestés. Cette perspective conduit aux enseignements et techniques du vajrayāna puis du mahamudra et du dzogchen.

Rapport au Hīnayāna

Le bouddhisme mahāyāna a très graduellement redéfini le bouddhisme d’origine, dont le theravāda actuel ou « doctrine des Anciens » est l’héritier, comme hīnayāna, « petit véhicule », terme un peu condescendant qui veut mettre en évidence le pouvoir salvateur limité à l'adepte lui-même de la pratique traditionnelle, en contraste avec l'idéal du bodhisattva prôné par le « grand véhicule », selon lequel l'adepte s'engage à délivrer, outre sa personne, tous les êtres.

Le nouveau bouddhisme ne s’appuie pas seulement sur les écrits du Bouddha historique, mais aussi sur des textes postérieurs qu’il présente néanmoins comme dictés ou inspirés par Shākyamouni, et même d'autres bouddhas, ainsi que sur des exégèses et les écrits d'autres « maîtres ». Il ne rejette pas les écrits ou pratiques hīnayāna, mais prétend qu'ils correspondent aux besoins de pratiquants moins avancés.

Bien que le mot « schisme » soit couramment employé, jusqu'au VIIe siècle, les moines hīnayāna et mahāyāna pratiquent dans les mêmes monastères, suivant les mêmes règles, et ce dans l'ensemble de la sphère d'influence indienne ; la forme pratiquée est considérée comme un choix personnel.

Le courant mahāyāna émerge à partir du Ier siècle et s’affirme au IIe siècle en Inde du Nord et dans l’Empire kouchan presque simultanément. Le processus exact de sa formation n'a pas encore été éclairci, bien qu’on retrouve des ressemblances doctrinales sur quelques points avec certaines écoles anciennes, Ekavyāvahārika, lokottaravādin et sautrāntika en particulier ; des notions et pratiques issues de cultures non-indiennes tels que le christianisme ou le gréco-bouddhisme ont dû jouer un rôle.

L’école madhyamaka fondée au IIe siècle par l'Indien Nāgārjuna et son disciple Aryadeva, dont l’influence sera très grande, est la première école proprement mahāyāna, suivie de l'école cittamātra fondée au IVe siècle par les Gandhârais Asanga et Vasubandhu, disciples de Maitreyanatha.

Les premières occurrences des termes « mahāyāna » et « hinayāna » se trouvent dans le Sūtra du Lotus et la Prajñāpāramitā en 8000 strophes (Aṣṭasāhasrikā Prajñāpāramitā Sūtra), qui pourraient remonter au Ier siècle de notre ère, voire au Ier siècle av. J.-C. pour le second.

Il ne faut pas confondre le mahāyāna qui apparaît au début de l’ère chrétienne avec la Mahāsāṅghika, « grande communauté » partisane de réformes, jugée hérétique et poussée à la sécession par les traditionalistes sthaviravādin à une époque plus ancienne, variant selon les sources du concile de Vaisali (IVe siècle av. J.-C.) au concile de Pāṭaliputra (IIIe siècle av. J.-C.). Néanmoins, ces deux courants qui partagent le préfixe « grand » ont sans doute en commun de proposer une forme moins austère et plus accessible à un plus grand nombre. Une des versions du concile de Pāṭaliputra voit dans la Mahāsāṅghika ceux qui contestent la perfection des arhats, une idée que l’on retrouve dans la doctrine mahāyāna.

voir aussi : Histoire du bouddhisme,Expansion du Bouddhisme via la Route de la Soie et Bouddhisme dans le monde

Le mahāyāna connut au cours du premier millénaire de l’ère chrétienne une phase d’expansion qui le diffusa tout d’abord en Asie centrale, puis dans tout l’Extrême-Orient et en Asie du Sud-Est. La contre-réforme brahmanique en Inde et l’expansion de l’Islam le firent reculer dès le VIIe siècle en Inde et en Asie centrale. En Asie du Sud-Est, il fut progressivement supplanté par le theravāda ; il y a presque disparu après le XVe siècle, à l’exception de la diaspora chinoise et du Viêt Nam, plus influencé par le bouddhisme chinois.

De nos jours le « grand véhicule », formes tantriques comprises, domine numériquement le « petit ». Il est surtout présent en Inde du Nord, en Chine et dans le Sud-Est asiatique (Chan et Jingtu), en Corée (Son, notamment l'école Jogye), au Japon (Zen, Tendai, Nichiren, Terre pure, néobouddhisme). Le vajrayāna qui en est dérivé est présent au Japon (Shingon et certaines formes de Tendai), ainsi qu’au Tibet, dans les régions voisines (Ouest chinois, Bhoutan, Népal) et en Mongolie, sous forme de lamaïsme empreint d'hindouisme, de chamanisme et d'une Bön propre aux peuples tibétains. La grande majorité des nouveaux bouddhistes issus de régions où ce courant spirituel est d'introduction récente choisissent une forme mahāyāna, tantrique ou zen en général.

L'absence de nature propre (autrefois limitée à la personnalité) s'étend dans le Mahāyāna à tous les phénomènes. Nāgārjuna ira jusqu'à affirmer que le saṃsāra et le nirvāṇa sont comme « les deux côtés d'une assiette (ou d'une pièce) ».

Fortement inspirés de l'hindouisme, les préceptes du mahāyāna réintroduisent des idées écartées par le Bouddha, le salut par la dévotion, le ritualisme ou la présence de divinités (yidam), parfois absorbées par syncrétisme à partir d'autres religions, comme le taoïsme ou le shintoïsme. À la rigueur et la discipline personnelle du « petit véhicule » (telle est l'expression péjorative des tenants du mahāyāna), le « Grand Véhicule » oppose la compassion (karuṇā) et l'intercession par les bodhisattvas, dont la sagesse personnelle est utilisée pour venir en aide à autrui, par le biais du transfert de mérites (parinama). En effet, alors que dans la doctrine des anciens le but, pour chacun, est de devenir soi-même un arhat, dans le mahāyāna le développement du bodhicitta et la pratique du bodhisattva ont préséance. En plus de la prise de refuge, le mahāyāniste peut prononcer des vœux de bodhisattva (pranidhana) où il s’engage à œuvrer après son illumination à la salvation de tous les êtres jusqu’au dernier.

Les laïcs peuvent accéder au nirvāṇa, à condition qu'ils pratiquent en développant avec foi la bienveillance et la compassion envers autrui, et effectuent quotidiennement les exercices de yoga enseignés par leurs guides spirituels. La notion de tathagatagarbha, « embryon d’être-en-soi » ou « embryon de bouddha », qui serait universellement présent chez les êtres sensibles, conforte cette pratique.

Le Bouddha, personnage historique, devient dans la doctrine des trois corps l'émanation d'un bouddha cosmique comme peut l'être Vairocana, une divinité panthéiste et syncrétique englobant en son sein les anciennes divinités. Ces déités représentent des qualités vers lesquelles doit tendre le pratiquant, le but étant de développer les causes qui vont permettre d'élargir sa conscience et d'établir l'être dans des actes libérateurs de l'attachement au concept du moi.

Il existe différentes façons d'aborder le bouddhisme. Les études de sociologie religieuse semblent indiquer que les pratiquants du mahāyāna, particulièrement les laïques, le considèrent en général comme une religion. Par ailleurs, de par sa large diffusion et son appel universel, le mahāyāna a donné naissance à de nombreuses formes mixtes, mélanges de religion locale et de bouddhisme, parfois appelées « bouddhisme populaire ».

Les sūtras mahāyāna sont très nombreux. Le Śālistambasūtra serait l'un des plus anciens. Certains, le Sūtra du Diamant et le Sūtra du Cœur notamment, sont récités quotidiennement dans de grandes parties du monde bouddhiste. D'autres sont plus spécifiquement liés à une école.

Les plus anciennes versions à nous être parvenues sont les traductions chinoises que le moine Lokaksema fit entre 178 et 189 à Luoyang, en particulier le Pratyutpanna Sūtra qui introduit le bouddha Amitābha et les Prajñāpāramitā Sūtras dont font partie le Sūtra du Cœur et le Sūtra du Diamant1.

Selon certaines sources, un travail de traduction de sūtras du gandhari en sanskrit s’étendant sur douze ans aurait été entrepris sous le règne de Kanishka Ier (127-147) dans l’Empire kouchan lors d’un concile.

La tradition mahāyāna préconise que Gautama Bouddha a dispensé son enseignement selon les différents degrés d’avancement spirituel de ses disciples. Selon cette perspective, les sūtras hīnayāna, dits « de la première mise en mouvement de la roue de l'enseignement » (premier exposé de la doctrine prononcé au Parc aux daims), sont destinés à un auditoire moins avancé. C'est plus tard, au pic des Vautours, qu'il aurait débuté l'enseignement des textes « de la deuxième mise en mouvement de la roue de l'enseignement », destinés aux disciples les plus avancés. Néanmoins, l’école Huayan présente l'Avatamsaka Sutra sur lequel elle s’appuie comme le premier dicté par le Bouddha juste après son éveil. Certains considèrent les sûtras dans lesquels le concept de tathāgatagarbha tient une place importante (ex. : Lankāvatāra sūtra) comme relevant d'une « troisième mise en mouvement de la roue de l'enseignement». Le vajrayāna reconnaît l’importance des sūtras mahāyānas mais fait surtout appel aux tantras considérés comme plus efficaces.
Quelques textes importants

Bien que composés selon les historiens dans les premiers siècles de notre ère, ces sûtras contiennent bien l’enseignement du bouddha :

Sūtras tirés du plus ancien corpus mahāyāna, la littérature Prajñāpāramitā insistant sur la notion de Śūnyatā
Le Sūtra du Cœur, concis et condensé, est probablement le texte bouddhique le plus connu.
Le Sūtra du Diamant, destiné aux mahāyānistes avancés, traite la nature de Bouddha.
Le Sūtra du Lotus, écriture importante de certaines écoles chinoises (Tiantai) et japonaises (Tendai, Nichiren), considéré par ces écoles comme le dernier dicté par le Bouddha, summum de son enseignement.
Le Sūtra de l'Ornementation Fleurie (Avatamsaka Sutra), écriture de référence des écoles Huayan (Chine) et Kegon (Japon), qui le considèrent comme le premier témoignage du Bouddha juste après son éveil, donc le plus précieux ; il s’agit d’un ouvrage composite dont certaines sections sont à l’origine des textes indépendants, comme le Sûtra des Dix Terres (Dashabhumikasutra).
Le Mahāparinirvāṇa Sūtra, un des textes qui expose la présence universelle chez les êtres vivants de la nature de bouddha tathagatagarbha
Le Shurangama Sutra, bien connu des bouddhistes chinois en général et de l'école Chan en particulier.
Le Lankāvatāra sūtra, sûtra de référence de la première école Chan.
L'Enseignement de Vimalakirti (Vimalakirtinirdesasutra), contient à la fois l’enseignement du Bouddha et celui de Vimalakirti, un laïc à la sagesse exemplaire.
Le Sutra de la lumière dorée2.

Les deux textes de base de l’école Shingon sont à la fois des sûtras et des tantras :

Le Maha Vairochana Sutra
Le Sūtra du pic du vajra

Textes d’autres maîtres :

Le Sūtra de l’Estrade, attribué à Hui Neng.
Vivre en Bodhisattva (Bodhicaryâvatâra), de Shantideva
Le Linji lu, du premier patriarche de Rinzai, branche du Zen
Recueils de kōans : Le Recueil de la falaise bleue et La Barrière sans porte
Écrits de maîtres coréens ou japonais tels que Jinul ou Dōgen


Le madhyamaka, voie médiane, basé sur les enseignements de Nāgārjuna, fut fondé en Inde au IIe siècle. Cette école contredit toute attitude intellectuelle : « Le Vainqueur a dit que la vacuité est l'évacuation complète de toutes les opinions. Quant à ceux qui croient en la vacuité, ceux-là, je les déclare incurables. » 3.
Le cittamātra, rien qu'esprit, fut fondé par Asanga et Vasubandhu au IVe siècle. Il propose un enseignement idéaliste : « l'objet n'existe pas» 4.
Apparition en Chine à partir du Ve siècle de nombreuses écoles médiévales et écoles des Sui et des Tang, dont les deux principales sont Terre Pure et Chan.
La Société du lotus blanc, fondée en 402 en Chine par Huiyuan, est considérée comme la première des écoles de la terre pure. Ces écoles, présentes dans tout l'Extrême-Orient et en Asie du Sud-Est, vénèrent le Bouddha nommé Amitābha, lumière infinie.
Bodhidharma, qui vécut aux alentours du VIe siècle, est traditionnellement reconnu comme le fondateur du Chan en Chine, à l'origine des courants Zen : Sōtō, Rinzai, Ōbaku.
Le courant Tiantai chinois a donné le Tendai japonais syncrétiste (Zen, tantrisme, amidisme), berceau ou inspirateur de nombreux autres courants (Nichiren, certains courants Terre Pure). Ses textes ont été adoptés par le chan.
Le bouddhisme vajrayāna, véhicule de diamant, apparait aux alentours du VIIe siècle en Inde et se développe surtout au Tibet (lamaïsme) et au Japon (Shingon, partiellement Tendai). Il est parfois considéré comme la troisième grande branche du bouddhisme (le « Troisième Tour de la Roue du Dharma ») réconciliant le Grand et le Petit véhicule.

Emojione 267B.svg

Cette section a besoin d'être recyclée (indiquez la date de pose grâce au paramètre date).

Longtemps cantonnés dans des espaces géographiques différents, le mahāyāna et l'école des anciens sont parfois à nouveau en confrontation. Pour le théravāda, la primauté historique est un gage d'orthodoxie envers l'enseignement du bouddha, les changements du mahāyāna étant perçus comme une dénaturation du message originel. Pour les partisans du mahāyāna, le qualificatif hinayāna désigne dans leurs enseignements une spiritualité sèche ou une recherche tournée vers sa seule réalisation personnelle, ce qui selon eux va à l'encontre du but recherché.
Notes et références

↑ Lokaksema ne traduisit que le premier fragment de l'ensemble Prajñāpāramitā, Pratique de la Prajñāpāramitā, en chinois Daoxing bore jing (道行般若經)
↑ http://www.fpmt.org/sutras/golden-light-sutra/download.html [archive]
↑ Nāgārjuna
↑ Asaṅga, traduction Étienne Lamotte


Philippe Cornu, Dictionnaire encyclopédique du bouddhisme [détail des éditions]
Philippe Cornu, Dictionnaire Encyclopédique du bouddhisme, nouvelle édition augmentée, Seuil, 2006.
Akira Hirakawa, A history of Indian Buddhism : from Śākyamuni to early Mahāyāna, Delhi : Motilal Banarsidass 2007.
Jean-Marc Vivenza, Nāgārjuna et la doctrine de la vacuité, Albin-Michel, 2001.
Jean-Marc Vivenza, Tout est conscience, une voie d'éveil bouddhiste, l'école du Yogâcâra (Cittamātra), Albin Michel, 2010.
Shinjo Ito, Shinjo: Reflections, Somerset Hall Press, 2009.
Paul Williams, Mahayana Buddhism: The Doctrinal Foundations, Second Edition, Routledge, Oxford, 2009.

Voir aussi
Articles connexes

Bouddhisme hīnayāna
Bouddhisme theravāda
Bouddhisme vajrayāna
Bouddhisme tibétain
Bouddhisme de Nichiren

Liens externes

Présentation du Bouddhisme indien [archive] - La vie de Bouddha, le bouddhisme ancien, la révolution du Mahayana, le bouddhisme tantrique


Le Triangle austral est une petite constellation de l'hémisphère sud dont les trois étoiles les plus lumineuses, de deuxième et troisième magnitude apparente, forment approximativement un triangle équilatéral.


1 Histoire
2 Observation des étoiles
3 Étoiles principales
3.1 Atria (α Trianguli Australis)
3.2 Autres étoiles
4 Objets célestes
5 Voir aussi


Le Triangle austral fut introduit pour la première fois par le navigateur italien Amerigo Vespucci en 1503. Réinventée par les navigateurs néerlandais Pieter Dirkszoon Keyser et Frederick de Houtman à la fin du XVIe siècle et introduite par Johann Bayer dans son Uranometria en 1603.
Observation des étoiles

Localisation de la constellation

Le triangle austral est situé aux pieds du Centaure. Partant de Alpha et Bêta du Centaure, le triangle est situé à une dizaine de degrés au Sud-Est.
Visibilité nocturne de la constellation.

Forme de la constellation

Sa forme est facilement repérable, si les conditions de visibilités sont satisfaisantes. Le triangle austral se rapproche bien d'un triangle équilatéral.
Étoiles principales
Article détaillé : Liste d'étoiles du Triangle austral.
Le Triangle austral dans l'Uranographia de Johannes Hevelius
Atria (α Trianguli Australis)

Atria (α Trianguli Australis) est l'étoile la plus brillante de la constellation du Triangle austral avec une magnitude apparente de +1,91 (la 43e étoile la plus brillante du ciel nocturne). Distante d'environ 400 années-lumière, c'est une géante rouge-orange 2 000 fois plus brillante que le Soleil, 9 fois plus massive et s'étendant sur une ua.
Autres étoiles

β Trianguli Australis, de magnitude apparente +2,83, est une géante relativement proche, puisque distante de 40 années-lumière.

γ Trianguli Australis, le dernier sommet du triangle, est une étoile blanche de la séquence principale de magnitude +2,87.

R Trianguli Australis est une variable céphéide, oscillant entre les magnitudes +6,0 et +6,8 sur une période de 3,4 jours.
Objets célestes

La constellation du Triangle austral héberge l'amas ouvert NGC 6025, les nébuleuses planétaires NGC 5844 et NGC 5979 et les galaxies NGC 6156 et IC 4595.

On y trouve aussi les galaxies spirales IC 4584 et IC 4585 qui sont en interaction, IC 4584 étant partiellement déformée par les forces de marée de IC 4585.
Voir aussi

Liste d'étoiles du Triangle austral

Les nouvelles constellations australes dans l'Uranometria de Bayer
v · m
Les 88 constellations officielles Aigle · Andromède · Autel · Balance · Baleine · Bélier · Boussole · Bouvier · Burin · Caméléon · Cancer · Capricorne · Carène · Cassiopée · Centaure · Céphée · Chevelure de Bérénice · Chiens de chasse · Cocher · Colombe · Compas · Corbeau · Coupe · Couronne australe · Couronne boréale · Croix du Sud · Cygne · Dauphin · Dorade · Dragon · Écu de Sobieski · Éridan · Flèche · Fourneau · Gémeaux · Girafe · Grand Chien · Grande Ourse · Grue · Hercule · Horloge · Hydre · Hydre mâle · Indien · Lézard · Licorne · Lièvre · Lion · Loup · Lynx · Lyre · Machine pneumatique · Microscope · Mouche · Octant · Oiseau de paradis · Ophiuchus (ou Serpentaire) · Orion · Paon · Pégase · Peintre · Persée · Petit Cheval · Petit Chien · Petit Lion · Petit Renard · Petite Ourse · Phénix · Poisson austral · Poisson volant · Poissons · Poupe · Règle · Réticule · Sagittaire · Scorpion · Sculpteur · Serpent · Sextant · Table · Taureau · Télescope · Toucan · Triangle · Triangle austral · Verseau · Vierge · Voiles
Constellations disparues célèbres Antinoüs · Cerbère · Chouette ou Grive solitaire · Guêpe ou Mouche Boréale · Navire Argo · Petit Triangle
Liste des constellations: officielles (par grandeur) · disparues · par date de création


En astronomie, la magnitude absolue indique la luminosité intrinsèque d'un objet céleste, au contraire de la magnitude apparente qui dépend de la distance à l'astre et de l'extinction dans la ligne de visée.

Pour un objet situé à l'extérieur du Système solaire, elle est définie par la magnitude apparente qu'aurait cet astre s'il était placé à une distance de référence fixée à 10 parsecs (environ 32,6 années-lumière) en l'absence d'extinction interstellaire.
Pour un corps du Système solaire, il s'agit de la magnitude apparente qu'il aurait à une unité astronomique à la fois de la Terre et du Soleil, en supposant sa face visible totalement illuminée.
Pour les météores (étoiles filantes), il s'agit de leur magnitude apparente s'ils étaient observés à 100 km d'altitude au zénith.

Comme toutes les magnitudes, elle est une fonction affine décroissante du logarithme de la luminosité de l'objet : la magnitude augmente d'une unité lorsque la luminosité est divisée par 2,5. La différence entre magnitude absolue et apparente (ou relative), dans le cas d'un objet situé en-dehors du Système solaire, est donnée par le module de distance. La magnitude absolue peut être donnée dans une bande spectrale, le plus souvent le filtre V du système photométrique de Johnson, ou comme magnitude bolométrique, à savoir qu'elle décrit le flux reçu dans toutes les longueurs d'onde. La différence entre la magnitude absolue en bande V et cette dernière constitue la correction bolométrique.


1 Étoiles et galaxies (M)
1.1 Définition
1.1.1 Définition originale (1902)
1.1.2 Définition actuelle
1.2 Magnitude apparente et distance
2 Magnitude absolue des objets du Système solaire (H)
3 Objets célestes très lumineux
4 Notes et références
5 Voir aussi
5.1 Articles connexes
5.2 Liens externes

Étoiles et galaxies (M)
Définition originale (1902)

« Nous définissons par ailleurs la magnitude absolue (M) d'une étoile, dont la parallaxe est π et la distance r, comme la magnitude apparente qu'aurait cette étoile si elle était transférée à une distance du Soleil correspondant à une parallaxe de 0,1 arcseconde »

— "6. Absolute luminosity and absolute magnitude", Publications of the Kapteyn Astronomical Laboratory Groningen, vol. 11, page 12 (http://adsabs.harvard.edu/abs/1902PGro...11Q..12 [archive].), traduction libre.
Définition actuelle

Par définition de l'Union astronomique internationale[réf. nécessaire], « la magnitude absolue d'un objet est la magnitude que verrait un observateur situé à une distance d'exactement 10 parsecs [soit 32,6 années-lumière] de cet objet ».

La magnitude absolue est ainsi une échelle logarithmique directement liée à la luminosité de l'étoile. La définition de la magnitude absolue s'écrit en termes mathématiques :

M = − 2 , 5 log ⁡ ( L / ( 4 π ( 10 p c ) 2 ) ) + C {\displaystyle M=-2,5\,\log(L/(4\pi (10pc)^{2}))+C} M=-2,5\,\log(L/(4\pi (10pc)^{2}))+C

où L est la luminosité de l'étoile exprimée en unités de luminosité solaire, C une constante, et log désigne le logarithme décimal. S'agissant d'une échelle logarithmique inversée, plus un astre est lumineux, plus sa magnitude est faible.

Selon que la luminosité est calculée sur une bande spectrale bleue B (autour de 436 nm) ou visible V (aux alentours de 545 nm), la magnitude absolue est notée MB ou MV. La constante est choisie aujourd'hui telle que les magnitudes absolues du Soleil dans les bandes B et V soient MB = 5,48 et MV = 4,83.

Quand on considère la totalité du spectre électromagnétique, des ondes radio aux rayons gamma, et pas seulement une bande spectrale donnée, on parle de luminosité bolométrique, et donc de magnitude bolométrique.

Les magnitudes absolues des étoiles s'étendent généralement de -10 à +17 en fonction de leur type spectral : une supergéante bleue a une magnitude absolue descendant jusqu'à -10 tandis que celle d'une naine rouge peut aller jusqu'à +17. Le Soleil, avec une magnitude absolue de +4,8 se situe à peu près à mi-chemin de ces deux extrêmes.
Magnitude apparente et distance

La comparaison de la magnitude absolue avec la magnitude apparente (qui est la magnitude observée effectivement sur Terre) permet une estimation de la distance de l'objet. Suivant la décroissance de la luminosité avec le carré de la distance, on obtient :

m − M = 5 log ⁡ ( D ) − 5 {\displaystyle m-M=5\,\log(D)-5} m-M=5\,\log(D)-5

où m {\displaystyle m} m est la magnitude réelle apparente, M {\displaystyle M} M la magnitude absolue et D {\displaystyle D} D la distance exprimée en parsecs. La valeur μ = m − M {\displaystyle \mu =m-M} \mu =m-M est aussi appelée module de distance, ce dernier étant plus souvent utilisé pour les objets extra-galactiques.

Pour avoir la magnitude absolue, il faut des modèles stellaires, et connaître la température de l'étoile (qui peut s'obtenir à partir de l'indice de couleur, qui n'est autre que la différence des magnitudes apparentes d'un objet dans deux bandes spectrales différentes).

Dans la pratique, la seule quantité aisément accessible est évidemment la magnitude observée, qui est en fait la combinaison de la magnitude apparente et de l'absorption interstellaire: m = m r = m o b s − A {\displaystyle m=m_{r}=m_{obs}-A} m=m_{{r}}=m_{{obs}}-A, où A {\displaystyle A} A est l'absorption.

La connaissance de l'absorption est souvent critique. L'absorption modifie la luminosité réelle de l'objet, à cause de la diffusion de la lumière par les grains de poussière interstellaire. La distribution chaotique des grains dans l'espace rend extrêmement difficile l'estimation de l'absorption interstellaire, puisque celle qui est valable dans une direction donnée pour un objet donné, peut être significativement différente pour l'étoile d'à côté (en faisant l'hypothèse que les deux étoiles sont à la même distance). De plus, à cause de l'effet de diffusion, l'absorption dépend de la longueur d'onde, et est donc un effet chromatique (voir article détaillé).

Donc, en pratique, l'équation s'écrit comme suit:

m obs − M − A = 5 log ⁡ ( D ) − 5 {\displaystyle m_{\text{obs}}-M-A=5\,\log(D)-5} m_{{{\text{obs}}}}-M-A=5\,\log(D)-5

et seule la valeur de m obs {\displaystyle m_{\text{obs}}} m_{{{\text{obs}}}} est facile à mesurer.
Magnitude absolue des objets du Système solaire (H)

Dans ce cas particulier, la distance de référence n'est pas 10 parsec, mais une unité astronomique.

Les objets du Système solaire comme les planètes, les comètes ou les astéroïdes ne font que réfléchir la lumière qu'ils reçoivent du Soleil et leur magnitude apparente dépend donc, non seulement de leur distance à la Terre, mais aussi de leur distance au Soleil. La magnitude absolue de ces objets est donc définie comme leur magnitude apparente s'ils étaient situés à une unité astronomique du Soleil et une unité astronomique de la Terre, l'angle de phase étant de zéro degré (à la « pleine lune », toute la surface visible depuis la Terre est éclairée).

Pour un corps situé à une distance r {\displaystyle r} r de la Terre et a {\displaystyle a} a du Soleil, la relation entre sa magnitude (relative) m {\displaystyle m} m et sa magnitude absolue, notée H {\displaystyle H} H, est donnée par la formule :

m = H + 5 log ⁡ ( r ) + 5 log ⁡ ( a ) − 2 , 5 log ⁡ ( p ( χ ) ) {\displaystyle m=H+5\,\log(r)+5\,\log(a)-2,5\,\log(p(\chi ))} m=H+5\,\log(r)+5\,\log(a)-2,5\,\log(p(\chi ))

où p ( χ ) {\displaystyle p(\chi )} p(\chi ) est l'intégrale de phase, fonction de χ {\displaystyle \chi } \chi, représentant l'angle de phase de l'objet ; r {\displaystyle r} r et a {\displaystyle a} a doivent être exprimées en unités astronomiques.

L'intégrale de phase p ( χ ) {\displaystyle p(\chi )} p(\chi ) peut être "approchée" par la formule :

p ( χ ) = 2 3 ( ( 1 − χ π ) cos ⁡ χ + ( 1 / π ) sin ⁡ χ ) {\displaystyle p(\chi )={\frac {2}{3}}\left(\left(1-{\frac {\chi }{\pi }}\right)\cos {\chi }+(1/\pi )\sin {\chi }\right)\!\,} p(\chi )={\frac {2}{3}}\left(\left(1-{\frac {\chi }{\pi }}\right)\cos {\chi }+(1/\pi )\sin {\chi }\right)\!\,

La situation décrite par la définition de la magnitude absolue est physiquement impossible : l'angle de phase est de 30 degrés pour un astre sphérique à une unité astronomique de la Terre et du Soleil. Elle doit être considérée comme une référence — et elle se trouve donner le bon ordre de grandeur pour le résultat observé.
Objets célestes très lumineux

Quelques étoiles visibles à l’œil nu ont une magnitude absolue qui fait qu’elles seraient plus brillantes que les planètes si elles étaient effectivement éloignées de seulement 10 parsecs. C’est le cas des supergéantes Rigel (-7,0), Déneb (-7,2), Naos (-7,3) et Bételgeuse (-5,6). À titre de comparaison, les objets les plus brillants du ciel après le Soleil (qui a une magnitude apparente de -26,73) sont la Lune (magnitude apparente de -12 lors de la pleine lune) et Vénus (magnitude apparente de -4,3 à son maximum de brillance).

Le dernier objet céleste dont la magnitude apparente fut comparable à la magnitude absolue des trois objets ci-dessus[pas clair] était une supernova qui se produisit en 1054 (et nommée SN 1054) et dont aujourd’hui il ne subsiste qu’une nébuleuse planétaire (la nébuleuse du Crabe) et un pulsar. Les observateurs de l’époque rapportèrent que la luminosité de cet objet était si grande qu’ils pouvaient lire en pleine nuit, voir les ombres portées de sa lumière et l’observer en plein jour[réf. nécessaire].

Les supernovas de type Ia ont une magnitude absolue de −19,31 : une telle supernova serait aussi lumineuse que le Soleil à une distance d’à peine 0,327 parsecs (1,07 année-lumière).
Notes et références

↑ Wolfgang Hillebrandt et Jens C. Niemeyer, « Type IA Supernova Explosion Models », Annual Review of Astronomy and Astrophysics, vol. 38, no 1,‎ 2000, p. 191–230 (DOI 10.1146/annurev.astro.38.1.191, Bibcode 2000ARA&A..38..191H, arXiv astro-ph/0006305)

Voir aussi
Articles connexes

Absorption interstellaire
Diagramme de Hertzsprung-Russell, montrant la répartition des étoiles en fonction de leur magnitude absolue et de leurs caractéristiques spectrales.
Excès de couleur
Indice de couleur
Magnitude apparente
Magnitude bolométrique
magnitude limite visuelle
Module de distance

Liens externes

Olivier Lascar, « "Visual data": la valse des constellations [archive] », Sciences et Avenir, 2012


Le courant de la Grande Ourse, également connu sous le nom de groupe mouvant de la Grande Ourse, association de la Grande Ourse ou encore Collinder 285, est le courant stellaire le plus proche de la Terre. Il s'agit d'une association d'étoiles partageant des caractéristiques communes telles que l'âge, la cinématique et la composition chimique. Son noyau se situe à environ 80 années-lumière de nous. Il comprend un grand nombre d'étoiles brillantes, dont la plupart des étoiles brillantes de la constellation de la Grande Ourse.

La Grande Ourse est la troisième constellation du ciel par son étendue. Elle contient le « grand chariot » ou « grande casserole », l'un des astérismes les plus connus de l'hémisphère nord. Faisant partie des 48 constellations identifiées par Ptolémée, elle est très facilement reconnaissable par la forme de casserole que composent ses sept plus brillantes étoiles. La Grande Ourse est une constellation circumpolaire pour les observateurs situés au-dessus de 41° de latitude Nord et elle ne semble jamais se coucher. En grec, le mot ours se dit arktos, qui a donné le nom d'Arctique.

Mythologie gréco-romaine

Selon la mythologie grecque, cette constellation représenterait Callisto, une nymphe aimée de Zeus. Quand Héra, l'épouse de Zeus, découvrit leur relation, elle changea Callisto en Grande Ourse et son fils Arcas en Petite Ourse. Outragée par cette offense à son honneur, Héra demanda justice à l'Océan, et les ourses furent alors condamnées à tourner perpétuellement autour du pôle Nord, jamais autorisées à se reposer sous la mer.

Selon une autre version1, la nymphe Callisto était la fille de Lycaon, un roi d’Arcadie. Zeus l’aperçut alors qu’elle chassait en compagnie d’Artémis et il s’en éprit. Héra, jalouse, changea la jeune fille en ourse après qu’elle eut donné naissance à un fils, Arcas. L’enfant grandit, devint un homme, et un jour qu’il participait à une chasse, la déesse dirigea Callisto vers l’endroit où il se trouvait, dans l’espoir de lui voir décocher une flèche à sa mère, en toute ignorance. Mais Zeus enleva l’ourse et la plaça parmi les étoiles. Plus tard, son fils Arcas vint l’y rejoindre. Ils prirent respectivement les noms de Grande Ourse et de Petite Ourse.

Selon une autre version, Callisto était une nymphe au service d'Artémis. Elle a juré de rester vierge tout comme Artémis. Un jour, alors qu'elle cueillait des fleurs, Zeus la vit et s'éprit d'elle. Comme il savait qu'elle était vierge, il devait jouer le grand jeu. Il eut donc l'idée de prendre l'apparence de sa maîtresse et, revenue de sa promenade, elle fut étonnée par tant de besoin de tendresse. Le temps passa et la nymphe sentit son ventre grossir et, quand elle se déshabilla pour prendre un bain avec Artémis et les autres nymphes dans la mer Morte, elle vit son gros ventre et se sentit coupable de ne pas avoir remarqué tout de suite que ce n'était pas la déesse. Et quand la déesse l'aperçut, elle entra dans une rage folle et transforma Callisto en ourse avant qu'elle n'accouche. Et la déesse dit aux autres nymphes : « Tuons-la avant qu'elle ne s'échappe, elle nous servira de tapis et de dîner ! » À ces mots, la nymphe courut, poursuivie par les chasseuses. Quand la chasse fut terminée, Zeus ramassa la carcasse de l'ourse qu'il avait condamnée à l'exil et la mit au ciel. C'est là qu'elle mit au monde Arcas, qui désormais la suit tout le temps.

La Grande Ourse est à l'origine du terme « septentrional » : les Romains appelaient cette constellation septem triones c'est-à-dire « les sept bœufs de labour » qui tournent toujours autour du nord. Au Royaume-Uni, on l'appelle the Plough (la charrue), en Scandinavie, Karlavagen (le wagon de Charles, probablement Charlemagne), en Bretagne Karr kamm (chariot tordu), Karr Arzhur (le chariot du roi Arthur) ou Lost-arar (le bout de la charrue).

L'ours se dit arctos en grec, d'où le nom de cercle arctique qu'on donnait au cercle des étoiles circumpolaires toujours visibles (l'astronome Geminos assignait comme limite à ce cercle, « le pied de devant de la Grande Ourse »), et le terme Arctique qui désigne la région entourant le pôle Nord de la Terre2.

Une version arabe raconte que la constellation représente le cercueil d'un père tiré par ses trois filles (le rectangle que forment les quatre étoiles représente son cercueil). Elles le portent depuis la nuit des temps et essaient de rattraper son assassin (La Petite Ourse). Le jour où elles attraperont l'assassin, ce sera la fin du ikhan.
Extrême-Orient (Inde, Chine, Japon)

Dans l'astronomie hindoue, on l'appelle aussi Sapta Rishi (les sept sages), et en persan, Haft Awrang (les sept trônes).

En Chine, les Prêtres taoïstes avaient pour habitude de prier les esprits et les divinités représentés par les constellations et les étoiles comme la Grande Ourse, et en astronomie chinoise, ses sept étoiles principales correspondent à l'astérisme Beidou, un des plus anciens astérismes utilisés (hormis les loges lunaires, dont l'orientation était utilisée pour suivre le cycle des saisons.

Au Japon, la Grande Ourse est nommée "Louche du Nord" 北斗 (hokutô), et dans le Japon médiéval, chacune des sept étoiles de la grande Ourse portait un nom traditionnel, noms souvent hérités eux-mêmes de la Chine ancienne :

« Pivot » 樞 (sû) désigne Dubhe (Alpha Ursae Majoris)

« Superbe jade » 璇 (sen) désigne Merak (Beta Ursae Majoris)

« Perle » 璣 (ki) désigne Phecda (Gamma Ursae Majoris)

« Autorité » 權 (ken) désigne Megrez (Delta Ursae Majoris)

« Baguette de mesure en jade » 玉衡 (gyokkô) désigne Alioth (Epsilon Ursae Majoris)

« Ouverture du yang » 開陽 (kaiyô) désigne Mizar (Zeta Ursae Majoris)

Enfin, Alkaid (Eta Ursae Majoris) porte à elle seule plusieurs noms traditionnels : « Sabre » 劍 (ken) (forme abrégée de « Extrémité du sabre » 劍先 (ken saki) ), « Lumière scintillante » 搖光 (yôkô), ou encore « Etoile de la défaite militaire » 破軍星 (hagun sei), car se diriger en direction de cette étoile était censé être de mauvais augure pour une armée3.
Amérique du Nord

Certains Indiens d'Amérique du Nord (Algonquins, Micmacs, Narragansett, Cherokees) considèrent aussi ce groupe d'étoiles comme une ourse poursuivie par trois chasseurs. Il semblerait que la Grande Ourse ait été liée au mythe d'une chasse cosmique depuis le Paléolithique supérieur au moins, ce qui expliquerait la présence de cette croyance à la fois en Eurasie et en Amérique du Nord. Le proto-récit aurait pris la forme d'un cervidé poursuivi jusqu'au ciel par un chasseur, et s'y transformant en constellation4 .

Aux États-Unis, son surnom actuel est the Big Dipper (la grande cuillère).
Observation des étoiles
Constellation Grande Ourse
Visibilité nocturne de la constellation.

La Grande Ourse est une des constellations les plus connues, une de celles que l'on apprend généralement à reconnaître en premier dans l'hémisphère nord. Sept étoiles ressortent nettement parmi les autres et forment le Chariot (ou la Casserole). Cette formation en chariot est visible toute l'année dans les villes situées au-dessus de 40° de latitude nord ; à titre indicatif New York, Rome et Pékin sont très proches de cette latitude. Pour les villes situées plus au sud, le Chariot disparaît sous l'horizon pendant l'automne.
Guide pour déterminer l'étoile polaire et α Bootis (Arcturus) à partir de la Grande Ourse
Repérage de la constellation

La « grande casserole » se repère par observation directe. Dubhe (α UMa), Merak (β UMa), Phecda (γ UMa), Megrez (δ UMa), Alioth (ε UMa), Mizar (ζ UMa) et Alkaid (η UMa) forment l'un des astérismes les plus connus : le « Chariot » ou la « Casserole » (ou parfois la « Cuillère ») de la Grande Ourse. Cet astérisme est tellement caractéristique et brillant que Johann Bayer partit du bout (Dubhe) et le remonta (Alkaid) pour désigner les étoiles de la constellation, au lieu de les classer par magnitude comme il avait l'usage de le faire.

Forme de la constellation

Un autre astérisme provient de la culture arabe. Il s'agit des « sauts de la gazelle », une série de trois paires d'étoiles :

Alula Borealis (ν UMa) et Alula Australis (ξ UMa), le « premier saut » ;
Tania Borealis (λ UMa) et Tania Australis (μ UMa), le « deuxième saut » ;
Talitha Borealis (ι UMa) et Talitha Australis (κ UMa), le « troisième saut ».

Ces étoiles se trouvent le long de la frontière sud-ouest de la constellation, les « orteils » de l'Ourse.
Mizar et Alcor

Mizar (ζ UMa) est l'étoile du milieu dans la série des trois qui forment le « manche » de la casserole. Elle est connue pour posséder un compagnon — Alcor (80 UMa) — qui est discernable à l'œil nu (on peut le deviner sur l'illustration). Pouvoir les distinguer était d'ailleurs un défi traditionnel d'acuité de vision dans plusieurs cultures, Gengis Khan en aurait fait l'un des critères de sélection de ses archers5.
La Grande Ourse telle que dessinée par Johannes Hevelius au XVIIe siècle.
Repérages à partir de la constellation

Ces étoiles particulièrement visibles sont utiles pour trouver d'autres étoiles importantes, le grand chariot jouant le rôle d'un véritable poteau indicateur céleste.

Une méthode très connue permet de déterminer l'emplacement de l'étoile polaire (α Ursae Minoris) : en traçant la ligne des Gardes de la Grande Ourse, prolongée dans le sens Merak-Dubhe d'une distance égale environ à cinq fois la distance entre ces deux étoiles, on tombe sur l'Étoile polaire après une trentaine de degrés.
Dans l'autre sens, en prolongeant la ligne de Dubhe à Merac, cet alignement passe d'abord par ψ UMa après ~10°, puis par ν UMa (premier saut de la Gazelle, et patte avant de l'Ourse) après encore ~10°, et après un dernier saut de ~10° on tombe sur Zosma (δ Leo) (visible sur l'illustration). La paire d'étoiles qui forme la patte avant est pratiquement dans cet alignement, ce qui permet de confirmer son identification.
Si l'on part du bord intérieur de la casserole, on peut suivre l'alignement Megrez (δ UMa) Phecda (γ UMa). Cet alignement passe également par ψ UMa après ~10°, puis après ~15° sur une étoile plus faible entre les deux premiers sauts de gazelle, qui est Praecipua (46 Leonis Minoris). En continuant cet alignement on tombe dans le Lion), d'abord sur γ Leo (visible sur l'illustration) et dans son prolongement sur Régulus, après un parcours total de ~45°.
Dans l'autre sens, le même alignement Phecda (γ UMa) Megrez (δ UMa) traverse les gardiennes de la Petite Ourse, puis les pieds du Dragon, et arrive finalement dans l'axe des ailes du Cygne.
Une autre méthode de repérage très connue consiste à suivre la courbe de la queue de la casserole en tournant à gauche suivant un arc de cercle vers α Bootis (Arcturus), puis de continuer sur la même distance et avec la même courbure jusqu'à α Virginis (Spica).
Dans l'autre sens, la diagonale de la casserole qui passe par Megrez (δ UMa) et Merak (β UMa) se prolonge à travers θ UMa et la paire d'étoiles qui marque le troisième « saut de la Gazelle » (ι et κ UMa), et l'extrémité de la constellation. Au-delà, dans le même alignement, on tombe sur une petite étoile du Lynx (sans intérêt particulier), et après ~30° dans le même prolongement on tombe sur Castor et Pollux (un peu à droite de l'axe), des Gémeaux, et toujours dans le même alignement Rigel puis Bételgeuse de la constellation d'Orion.
Le « dos » de la Grande Ourse forme un alignement entre Megrez (δ UMa) et Dubhe (α UMa), qui se prolonge à travers 23 UMa et ο UMa (extrémité de la constellation, sur la « fesse » de l'Ourse). Cet alignement se prolonge à travers le Lynx sur une trentaine de degrés pour tomber sur Capella du Cocher.
Dans l'autre sens, l'alignement du « dos » de Dubhe (α UMa) à Megrez (δ UMa) passe par Alkaid (η UMa), le « nez » de l'Ourse, traverse la tête du Bouvier et permet de repérer Gemma dans la Couronne boréale.
Si l'on prolonge l'axe Phecda-Dubhe en reportant la même distance, on tombe juste en dessous des deux galaxies M81 et M82 (pas toujours facile à trouver autrement).

Étoiles principales
Liste d'étoiles de la Grande Ourse
Article détaillé : Liste d'étoiles de la Grande Ourse.
Alioth (ε Ursae Majoris)
Article détaillé : Alioth.

Alioth (ε UMa), vers le milieu de la queue du « chariot », est l'étoile la plus brillante de la constellation de la Grande Ourse et la 34e de la voute céleste.

Alioth est une étoile blanche distante de 81 années-lumière, environ quatre fois plus grande que le Soleil et trois fois plus massive. Son type spectral indique qu'il s'agit d'une étoile particulière (A0p) : elle présente certaines régions de son atmosphère enrichies en certains éléments (oxygène, europium, chrome, etc.) tandis qu'ils sont en déficit dans d'autres zones. Alioth est classée dans la catégorie des étoiles variables de type α2 Canum Venaticorun, dont α2 Canum Venaticorum, ou Cor Caroli, en est en effet le prototype).
Dubhé (α Ursae Majoris)
Article détaillé : Dubhé.

Dubhé (α UMa), la deuxième étoile de la constellation, est une supergéante orange, environ 30 fois plus grande que le Soleil. C'est également une étoile double car elle possède un compagnon distant de vingt-trois ua qui orbite autour d'elle en quarante-quatre ans. Plus loin, à 9 000 ua, se trouve un autre système binaire.
Mizar (ζ Ursae Majoris)
Article détaillé : Mizar.

Mizar (sans Alcor) est un système stellaire complexe de quatre étoiles : deux couples d'étoiles (l'un orbitant en vingt jours et demi, l'autre en cent-quatre-vingt jours) tournent l'un autour de l'autre. Elle tient une place de tout premier rang dans l'histoire des étoiles doubles : Mizar avec son cavalier Alcor est une binaire visuelle connue depuis extrêmement longtemps [réf. nécessaire]. C'est aussi la première étoile double télescopique découverte, (Mizar A et B, découverte par Giovanni Riccioli en 1650), et la première double photographiée (par G. P. Bond en 1857), et Mizar Aa et Ab, la première binaire spectroscopique (annonce faite par Edward Charles Pickering en 1889).
Autres étoiles

Merak, Phecda, Megrez, Alioth et Mizar, toutes les cinq des étoiles chaudes de classe A, font partie d'un groupe d'étoiles distant d'environ quatre-vingt années-lumière et se déplacent de concert dans l'espace. Ce groupe d'étoiles s'appelle le courant d'étoiles de la Grande Ourse
Objets célestes

Plusieurs galaxies se trouvent dans la Grande Ourse, dont la paire M81 (l'une des plus brillantes galaxies du ciel) et M82 au-dessus de la « tête » de l'Ourse, M101, une belle galaxie spirale au nord-ouest d'Alkaid (η UMa) et les galaxies spirales M108 et M109. La constellation contient environ cinquante galaxies, dont la plupart ont une magnitude supérieure à 10, et ne sont donc pas visibles sans instrument.

On y trouve également la nébuleuse planétaire M97.
Notes et références

↑ Ovide, Métamorphoses, II, 409-530. [archive]
↑ Béatrice Bakhouche, Les textes latins d'astronomie: un maillon dans la chaîne du savoir, Éditions Peeters, 1996, p. 129
↑ Le « Bansenshūkai », écrit en 1676 par le maître ninja Fujibayashi Yasutake, consacre plusieurs passages à ces étoiles, et montre une représentation traditionnelle de la Grande Ourse au centre de la voûte céleste, dans son cahier 8, volume 17, consacré à l’astronomie et à la météorologie (Traduction d’Axel Mazuer)
↑ d'Huy Julien, Un ours dans les étoiles: recherche phylogénétique sur un mythe préhistorique [archive], Préhistoire du sud-ouest, 20 (1), 2012: 91-106; A Cosmic Hunt in the Berber sky : a phylogenetic reconstruction of Palaeolithic mythology [archive], Les Cahiers de l'AARS, 15, 2012.
↑ Astrodéfis, Éditions Publibook, 2008, p. 113

Le drapeau de l'Alaska est le drapeau officiel de l'État américain de l'Alaska. Il se compose de huit étoiles couleur or qui représentent le « grand chariot » de la Grande Ourse et l'étoile polaire, sur un fond bleu foncé1.

Il fut dessiné en 1927 par Benny Benson, un garçon de 13 ans qui vivait alors dans un orphelinat de Seward, pour un concours destiné à créer un drapeau pour le territoire de l'Alaska. Le dessin de Benson a été choisi parmi plus de 700 dessins d'écoliers dans tout l'Alaska. La plupart des autres dessins étaient des variations sur le sceau du territoire : soleil de minuit, ours polaire, aurores boréales, tamis de chercheur d'or. Pour le choix de son drapeau, Benny Benson reçut une récompense de 1 000 dollars et une montre gravée. Benson s'est inspiré du ciel nocturne pour trouver les symboles du drapeau qu'il a dessiné, et il soumit cette description avec son dessin :

« Le champ bleu représente le ciel de l'Alaska et le myosotis, fleur de l'Alaska. L'étoile polaire représente le futur État de l'Alaska, l'État de l'Union le plus au nord. La Grande Ourse symbolise la force. »

La législature de l'Alaska a adopté le dessin de Benny Benson comme drapeau officiel du Territoire de l'Alaska le 2 mai 1927. Le tout premier drapeau basé sur le dessin de Benny, conçu avec de la soie bleue et des étoiles dorées, a flotté le 9 juillet 1927. Il est resté le drapeau de l'Alaska lorsque l'Alaska devint le 49e État américain, en 1959.

Les symboles du drapeau sont décrits dans la chanson Alaska's Flag, écrite par Marie Drake et mise en musique par Elinor Dusenbury.


Toutes les étoiles du courant de la Grande Ourse occupent la même région de la Voie lactée et se déplacent à des vitesses similaires, dans la même direction. Elles possèdent une métallicité voisine et approximativement le même âge. Ces points de convergence suggèrent que ces étoiles partagent une origine commune.

D'après l'âge de ces composantes, on pense que le courant de la Grande Ourse est un ancien amas ouvert. Il se serait formé à partir d'une nébuleuse protostellaire il y a environ 500 millions d'années, ce qui est relativement jeune. Les étoiles de l'amas se sont ensuite progressivement dispersées sous l'action des forces de marée et le groupe occupe aujourd'hui une région de l'espace mesurant approximativement 30 années-lumière de large sur 18.

Le courant de la Grande Ourse a été découvert en 1868 par Richard A. Proctor1, qui remarqua qu'à l'exception de Dubhe et Alkaid, les étoiles de la Grande Ourse possèdent un mouvement propre qui les fait toutes se diriger vers un même point situé dans le Sagittaire. Ainsi, à la différence de la plupart des autres constellations et astérismes, la Grande Ourse est constituée en grande partie d'étoiles étroitement liées les unes aux autres.
Membres du groupe

Le mouvement des étoiles dans l'espace est le principal critère pour déterminer si une étoile est un membre ou non du courant de la Grande Ourse. Il est nécessaire de connaître le mouvement propre des étoiles ainsi que leur vitesse radiale et leur parallaxe pour caractériser le mouvement de ces étoiles. Le satellite Hipparcos a permis en 2003 d'améliorer nettement l'estimation du mouvement propre et de la parallaxe des étoiles situées au voisinage du Soleil2. Une fois que la distance et la magnitude apparente des étoiles sont connues, on en déduit leur magnitude absolue, et ainsi leur âge. Les étoiles appartenant au courant de la Grande Ourse apparaissent alors partager un âge commun de 500 millions d'années.
Membres du noyau

Le noyau du courant de la Grande Ourse est constitué de 14 étoiles dont 13 appartiennent à la constellation de la Grande Ourse et la quatorzième à la constellation voisine des Chiens de chasse.

37 Ursae Majoris (HD 91480)
Beta Ursae Majoris (Merak) (HD 95418)
Gamma Ursae Majoris (Phecda) (HD 103287)
Delta Ursae Majoris (Megrez) (HD 106591)
HD 109011
HD 110463
Epsilon Ursae Majoris (Alioth) (HD 112185)
78 Ursae Majoris A (HD 113139A)
Gliese 503.2 (HD 115043)
Zeta Ursae Majoris (Mizar) A (HD 116656)
Zeta Ursae Majoris (Mizar) B (HD 116657)
80 Ursae Majoris (Alcor) (HD 116842)
HD 109647 (dans les Chiens de chasse)

Membres périphériques

D'autres étoiles appartiennent au courant de la Grande Ourse mais elles sont dispersées plus largement dans la voûte céleste (de Céphée au Triangle austral). Seules les étoiles possédant une désignation de Bayer ou une désignation de Flamsteed sont listées ci-dessous :

Delta Aquarii
Beta Aurigae (Menkalinan)
Zeta Bootis
18 Bootis
Chi Ceti
Zeta Crateris
29 Comae Berenices
Alpha Coronae Borealis (Alphecca)
59 Draconis
21 Leonis Minoris
Gamma Leporis
16 Lyrae
Gamma Microscopii
Chi1 Orionis
89 Piscium
Beta Serpentis
Tau6 Serpentis
Omega Serpentis
6 Sextantis
66 Tauri
Zeta Trianguli Australis
Pi1 Ursae Majoris
41 Virginis


Pendant longtemps, on a pensé que la brillante étoile Sirius appartenait à ce groupe, mais les recherches de 2003 effectuées par Jeremy King suggèrent que Sirius est trop jeune pour en être un membre à part entière2.

Notre Soleil lui-même est situé à la périphérie de ce groupe, mais il n'en est pas pour autant un membre, car son âge (4,6 milliards d’années environ) le rend en effet bien trop vieux pour qu'il puisse en faire partie. Notre Soleil parcourt en solitaire une orbite de 250 millions d'années autour du centre galactique, si bien que dans 40 millions d'années, il ne sera plus situé dans le voisinage des étoiles du courant de la Grande Ourse.
Notes et références

(en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « Ursa Major Moving Group » (voir la liste des auteurs).

↑ Mary Proctor, Everyman's astronomy, The Scientific Book Club, 1939, p. 64 [archive].
↑ a et b (en) Jeremy R. King, Adam R. Villarreal, David R. Soderblom, Austin F. Gulliver et Saul J. Adelman, « Stellar Kinematic Groups II - A Reexamination of the Membership, Activity, and Age of the Ursa Major Group », The Astronomical Journal, vol. 125, no 4,‎ avril 2003, p. 1980–2017 (DOI 10.1086/368241).


yanis la chouette
Messages : 220
Date d'inscription : 24/02/2017

Revenir en haut

La chouette effraie
DARK OBSCUR, photographe


et de la République de l'Olivier,
Fille Adoptive de Israel, de la Palestine et de leur Républiques.

Processus de Paix des secouristes de la république de l'Olivier.

Je crois qu'à l'avenir, plus personne ne pourra recréer des bulles d'exclusions...
Pour cela, je ne peux me permettre de mettre à l'écart tout individu(e) et "État".

Je ne suis qu'une femme ou un homme humble qui en vous adressant ces ces vers,
espère qu'il puisse vous conduire vers l'expérience, le travail et la communauté...
La solitude augmente ou diminue le nervosité... Cela s'appelle le malheur...

Alors par décision, on recherche à se tranquilliser et remettre la balance sur le zéro;
alors par construction, on décèle la notion d'une fragile tolérance:
Celle d'insulter !

Par Yahvé, cela est une horreur et une erreur...

La République de l'Olivier dit :
"Oui à la gréve, Non à l'Esclavage..."
la constitution rajoute :
"Oui à la Bibliothèque et Non à la Faim."
et le peuple doit rajouter :
"Oui à l'écoute et Non aux viols physiques et moraux."

Alors le Novice du Secourisme prends en charge sa nouvelle fonction autre qu'un service
militaire mais basé aussi sur la protection du Bien et du Corps.

"Je suis Y'becca"

Ecrit de
La chouette effraie.


Y'becca ou murmure de l'Arbre-Olivier.

Profils des Juges du Secourisme et
la république de l'Olivier.

Chére Minouska, Féline de Pierre et Yvette et toutes les bonnes volonté(e)s

Je regarde le temps différemment après la mort de Athéna la chatte Bleue.
De longues années à voyager; à travailler et à écrire... Tel un Spartiate, je me suis emprunt à une apogée sur la compréhension du monde qui m'entourai de ses richesses; J' y ai rencontré des lueurs, des affronts et des forces.

Je regarde celle qui a su réveiller la force de réveiller ces écrits que j'ai voulu sauvegarder par le fait que après
tout, aide toi et le ciel te répondra: Et je dois dire que ma volonté fut exaucer... Alors je regarde Minouska, une chatte qui a recueilli mon cœur en lambeau lors de la guerre ou intifada, si vous préférez:

Le Juge Suprême de la république de l'Olivier est un personnage
qui doit s'informer et accueillir la Parole de l'un et de l'Autre. Il se doit d'écrire des vers, des proverbes, des espoirs, des fables car notre peuple aime cela: Ni fouet, ni chaines ! être sérieux devant les nuages gris !
Car l'arbre peur garantir notre fraternité et la justice de l'eau propager la diversités des écritures des forets donc vers la connaissance et Yahvé... La République est le pilier de l’Âme dans le sens où il s’inclut dans le peuple et ne cherche pas à devenir idole, idolâtre ou idolâtré. Être humble doit être la qualité première du Juge Suprême de la République de l'olivier.

Dans la vallée du Nil à la plaine des cèdres; le juge suprême doit présenter ses hontes et ses espoirs... je vous fait part de mon expérience... Nuls réponses dans un premiers temps ne se fit entendre alors j'envoyai des mouettes, des chouettes et des canaris sous forme de lettre tel un oiseau qui apprends son premier envol.

Alors sous forme de mirage pour certains et pour d'autres, cela s'appelle un message. Je me fis ce constat et que la volonté en soit ainsi si il ne veulent pas entendre;

"Propage la Connaissance des serments car ce sont les hommes qui s'entretuent par leur entreprise, leur volonté et leur désir! Car certains vomissent sur la fraternité voilà un maillon de haine du trois en un délivré par le vieux coq... Rétablit l'apprentissage de l'Espérance sur l'apprentissage de marcher ! La canne de l'age n'est pas un spectre; elle est une source d'eau ! Tu apprendra à entendre ta douleur devant la faim ! Nous sommes des étapes et en cela cherche le fait d'exister ! La République est le pilier de l’Âme dans le sens où elle s’inclut dans le peuple et ne cherche pas à devenir idole, idolâtre ou idolâtré. Être humble doit être la qualité première !

Ecrit de
La chouette Effraie.

yanis la chouette
Messages : 220
Date d'inscription : 24/02/2017

Revenir en haut Aller en bas
Voir le profil de l'utilisateur http://www.atelier-yannistignard.com
yanis la chouette

Nombre de messages : 6019
Localisation : http://yanis.tignard.free.fr/
Date d'inscription : 09/11/2005

MessageSujet: Re: Grains of Silica, Sand, Geologists et Y'becca   Mer 3 Mai à 8:19

Jean-Pierre Vanderplancke
48 min ·

Ma réflexion de ce mercredi portera sur Voltaire.
On accorde souvent à Voltaire la célèbre citation : "Je ne suis pas d’accord avec ce que vous dites, mais je me battrai jusqu’au bout pour que vous puissiez le dire". C'est une erreur puisque le philosophe n'a jamais dit ça, mais par contre il a dit plein d'autres trucs plutôt très pertinents et encore plus d'actualité depuis les attentats de ces 3 dernières années. Se replonger dans ses classiques de temps à autre, ça ne fait pas de mal.
1. "Nous avons assez de religion pour haïr et persécuter, et nous n'en avons pas assez pour aimer et pour secourir." (Traité sur la tolérance, 1763)
2. "Le fanatisme est un monstre qui ose se dire le fils de la religion."
3. "Si c’est ici le meilleur des mondes possibles, que sont donc les autres ?" (Candide, ou l'Optimisme, 1759)
4. "La religion juive, mère du christianisme, grand-mère du mahométisme, battue par son fils et par son petit-fils." (Le Sottisier, paru post-mortem en 1883)
5. "Les hommes sont des insectes se dévorant les uns les autres sur un petit atome de boue." (Zadig ou la destinée, 1747)
6. "Que conclure à la fin de tous mes longs propos ? C'est que les préjugés sont la raison des sots." (Poème sur la Loi Naturelle, 1756)
7. "Les calomniateurs sont comme le feu qui noircit le bois vert, ne pouvant le brûler." (Le Sottisier, paru post-mortem en 1883)
8. "Si vous voulez qu'on tolère ici votre doctrine, commencez par n'être ni intolérants ni intolérables." (Traité sur la tolérance, 1763)
9. "Le fanatisme est un monstre mille fois plus dangereux que l'athéisme philosophique." (Dictionnaire philosophique, 1764)
10. "Si Dieu nous a faits à son image, nous le lui avons bien rendu." (Le Sottisier, paru post-mortem en 1883)
11. "Nous respectons plus les morts que les vivants. Il aurait fallu respecter les uns et les autres." (Dictionnaire philosophique, 1764)
12. "C'est à celui qui domine sur les esprits par la force de la vérité, non à ceux qui font les esclaves par la violence, que nous devons nos respects." (Lettres philosophiques, 1733)
13. "La tolérance n'a jamais excité de guerre civile ; l'intolérance a couvert la terre de carnage." (Traité sur la tolérance, 1763)
14. "Si l'on n'imprimait que l'utile, il y aurait cent fois moins de livres."
15. "Puissent tous les hommes se souvenir qu'ils sont frères!" (Traité sur la tolérance, 1763)
On aurait tout de même préféré qu'il soit un peu moins visionnaire l'ami Voltaire.


Burgess Meredith, né Oliver Burgess Meredith le 16 novembre 1907 à Cleveland dans l'Ohio et mort le 9 septembre 1997 à Malibu en Californie, était un acteur américain.


1 Biographie
2 Vie privée
3 Filmographie
3.1 Cinéma
3.2 Télévision
3.3 Voix françaises
4 Voir aussi
4.1 Lien externe


De son vrai nom, Oliver Burgess Meredith, il est le fils d'Ida Burgess et de George Meredith. Il commence sa carrière au théâtre en 1926 et la poursuit jusqu'en 1931. Il deviendra même membre à part entière d'une compagnie en 1933. Il a également été réalisateur, scénariste, technicien du son et producteur.

Dans les années 1950, il fut une des victimes du maccarthysme et inscrit sur la liste noire du cinéma.

Il joua entre autres dans le film Batman en 1966 dans lequel il interpréta le rôle du pingouin. Il participa aussi à quatre épisodes de La Quatrième Dimension. Dans trois de ses quatre apparitions, il interpréta des rôles de personnages timides et travaillant toujours dans le milieu des livres (une de ses apparitions d'homme timide fit d'ailleurs exception car il jouait le rôle d'un vendeur d'aspirateurs). Dans sa quatrième apparition, il interpréta le rôle du Diable sous les traits d'un journaliste et d'un linotypiste au service d'un rédacteur en chef criblé de dettes. Avec Jack Klugman, il est la seule célébrité ayant joué dans plus de trois épisodes dans cette série.

Il continua également sa carrière à la télévision dans les années 1970, et en 1983, reprit le rôle du narrateur dans la Quatrième Dimension, le film en remplacement de Rod Serling.

Son rôle le plus marquant reste celui de Mickey Goldmill, l'entraîneur plein de cœur de Rocky Balboa dans Rocky. Sa prestation lui vaut d'être nominé à l'Oscar du meilleur second rôle masculin (en parallèle avec Burt Young, nominé dans la même catégorie pour le rôle de Paulie). Il reprend son rôle dans les deuxième et troisième volets de la saga. Il réapparaît aussi dans une scène flashback dans le cinquième opus dont l'action se passe peu avant le grand combat de Rocky contre Apollo Creed. À ce moment, l'acteur alors âgé de 83 ans et donc bien vieilli depuis le troisième film, a été filmé à la limite du noir et blanc, son personnage n'ayant que 70 ans dans la scène.
Vie privée

Burgess Meredith a été marié quatre fois.

D'abord avec Helen Derby Merrien Burgess, la fille du président d'American Cyanamid.

Ses deux épouses suivantes étaient actrices, Margaret Perry puis Paulette Goddard.

Les 46 dernières années de sa vie, il fut marié avec Kaja Sundsten. Ensemble ils eurent 2 enfants : le musicien Jonathon Meredith et l'artiste peintre Tala Meredith.

Meredith est mort des complications de la maladie d'Alzheimer et d'un mélanome.


Le mélanome est un cancer de la peau ou des muqueuses, développé aux dépens des mélanocytes (tumeur mélanocytaire)1.

Son siège initial est la peau dans l'immense majorité des cas. Il existe toutefois des mélanomes de l'œil (mélanome choroïdien), des muqueuses (bouche, canal anal, vagin), et plus rarement encore des organes internes.

En dépit de ce que son nom suggère, un mélanome n'est pas toujours foncé : 5 % environ des mélanomes nodulaires sont « achromiques » (de la couleur normale de la peau chez les personnes autres qu'à peau noire)2.

On parle parfois de « mélanome malin » : il s'agit alors d'un pléonasme, le mélanome n'étant jamais bénin.


Son incidence augmente de plus de 2 % par an3, mais elle tend à se stabiliser dans certains pays, probablement du fait des changements d'habitude d'exposition au soleil4. Cependant, sa mortalité diminue régulièrement5, probablement du fait que la plupart des mélanomes détectés sont de petites tailles, et donc, de meilleur pronostic6.

Le mélanome cutané constitue en 2011 la 6e cause de cancer chez la femme avec 5 100 nouveaux cas estimés et la 8e chez l’homme avec 4 680 nouveaux cas estimés. Les mélanomes cutanés représentent respectivement les 14e et 12e causes de décès chez la femme et chez l’homme avec 720 et 900 décès estimés pour l’année 20117 pour 9 780 nouveaux cas totaux estimés8. Les taux d’incidence (standardisés monde) sont estimés à 10,1 et 9,7 pour 100 000, respectivement chez la femme et l’homme, et les taux de mortalité à 1,1 pour chacun des deux sexes.

Les mélanomes ne représentent que 10 % des cancers cutanés diagnostiqués en France. Moins fréquents que les carcinomes, ils sont toutefois les plus dangereux du fait de leur fort potentiel métastasique9.

En Europe, l’incidence du mélanome de la peau est hétérogène selon les pays et diminue selon un gradient Nord-Sud. Ce gradient est principalement lié aux différences de phototypes cutanés et de prédisposition génétique entre les populations européennes. Le taux d’incidence estimé en 2008 varie de 21,9 mélanomes pour 100 000 femmes au Danemark à 2,0 en Grèce et de 16,1 mélanomes pour 100 000 hommes en Suède à 2,5 en Grèce. Parmi les 27 pays européens, la France est classée pour cette même année au 20e rang pour l’homme et au 15e rang pour la femme7.

Cinq à dix pour cent des patients ayant un mélanome ont un antécédent familial de cette maladie3. Une mutation sur le gène CDKN2A (en) située sur le chromosome 9 ainsi que sur le gène CDK4 situé sur le chromosome 12 entraîne l'apparition du mélanome. Tous deux codent pour des protéines suppressives de tumeurs distinctes. Une mutation sur le gène BRAF (en) codant pour une kinase est présente dans plus d'un cas sur deux de mélanomes métastasés10. D'autres gènes sont aussi reliés à la transmission du mélanome : BAP1, POT1 (en), gène ACD (en), TERF2IP (en) et TERT (en)11.
Facteurs de risque

Le mélanome se forme dans environ 70 % des cas sur une peau auparavant indemne, et dans environ 30 % des cas sur un grain de beauté préexistant de type nævus. La kératose solaire favorise la survenue de ce cancer3. Ainsi, contrairement à une idée reçue, les nævus ne sont pas, dans l'immense majorité des cas, des états précancéreux qui se transforment en cancer à la suite d'expositions solaires multiples et l'exérèse systématique des nævus dans le but d'éviter la survenue de mélanomes est donc inutile. De plus, les nævus du tronc et de la face (zones habituellement plus exposées aux UV) n'ont pas plus de risque de se transformer en mélanomes que ceux d'autres zones de peau plus protégées12.

Il est cependant reconnu que les grands nævus congénitaux ont un risque plus élevé de transformation cancéreuse, et qu'un nombre élevé de nævus sur le corps est un marqueur de risque de développer un mélanome, sans que ce dernier résulte de la transformation des dits nævus.

Il se manifeste d'abord comme une simple tache pigmentée.

La brûlure solaire, en particulier dans l'enfance13 et les antécédents familiaux14 sont les principaux facteurs de risque. L'exposition solaire régulière et modérée d'une peau susceptible de bronzer a un certain effet protecteur15. Bien qu'il puisse apparaître partout, le mélanome a tendance à se former plus souvent sur les parties du corps qui sont couvertes dans la vie quotidienne mais exposées occasionnellement lors des bains de soleil, comme le torse et les jambes. De même, l'utilisation d'ultraviolets artificiels dans un but de bronzage augmente significativement le risque de mélanome16,17 avec une nette corrélation avec les doses prises. Pour des utilisateurs européens, un âge inférieur à 35 ans au moment des premières séances est associé à un risque multiplié par 217.

Il semble également exister une majoration modérée du risque de survenue d'un mélanome en cas d'antécédent d'endométriose ou de fibrome de l'utérus chez la femme18.

La couleur de la peau joue également un rôle important : le risque est plus que doublé chez les roux et très sensiblement augmenté chez les personnes avec peau pâle19. Il est plus de dix fois moins important chez les personnes de couleur de peau non blanche3.

L'exposition aux « pesticides domestiques » est un facteur de risque supplémentaire20.

Après une phase d'extension horizontale, parallèle à la surface cutanée, le mélanome plonge vers les couches profondes de la peau : (derme profond, hypoderme) et à partir de là, peut métastaser vers les ganglions lymphatiques, ou les organes internes (poumons, os, foie, cerveau).

Les capacités de métastase exceptionnelles du mélanome sont dues à la réactivation lors de la cancérisation d'un gène nommé slug21. Il s'agit du gène qui permet la migration dans l'embryon des cellules issues de la crête neurale, dont font partie les mélanocytes.
Formes superficielles

Les formes superficielles se répartissent en trois groupes :

Mélanome d'extension superficielle proprement dit (en anglais : superficial spreading melanoma, SSM) (70 %)
Il se voit à tout âge et dans toutes les localisations; il réalise une tache de forme irrégulière, polychrome, légèrement palpable.
Histologiquement, il existe des thèques et des cellules mélaniques disséminées dans toute la hauteur de l'épiderme et parfois dans le derme, accompagnées d'une réaction inflammatoire souvent intense du derme.

Mélanome de Dubreuilh (en anglais : lentigo melanoma, LM) (5 %)
Elle touche des sujets plus âgés et se voit sur les parties découvertes (pommettes).
La tache est de forme irrégulière, de coloration bistre inégale; elle est généralement plane, non palpable.
Histologiquement, l'atteinte, purement épidermique (au début), est surtout faite de cellules disséminées, avec peu de thèques. L'évolution est essentiellement locale. Les métastases à distance sont très rares et tardives.

Mélanome acro-lentigineux (8 %)
Il siège essentiellement sur les zones palmo-plantaires et sous les ongles. Il évolue comme un SSM avec toutefois un pronostic plus mauvais en raison d’un diagnostic plus tardif.

Les formes superficielles évoluent en deux stades :

d'abord extension lente, superficielle purement épidermique, par étalement centrifuge
puis pénétration dans le derme, sous forme d'un nodule qui va rapidement s'étendre en profondeur et donner des métastases.

Mélanome nodulaire

Dans environ 15 % des cas, le mélanome est nodulaire d'emblée, sans être passé par un stade superficiel individualisable.

Macroscopie : Le mélanome nodulaire constitue une lésion tumorale en saillie, monochrome, noire bleutée ou gris rose, parfois achromique, qui va s'accompagner d'un halo inflammatoire et s'ulcérer.

Microscopie : Il existe une prolifération en nappe, sans thèques, située dans le derme sans atteinte épidermique.

Indice de Breslow : Le pronostic des mélanomes dépend de l'extension en profondeur, il est pratiquement toujours fatal si l'envahissement va jusqu'à l'hypoderme. En pratique, on mesure l'épaisseur de la tumeur en millimètres (indice de Breslow). Une épaisseur supérieure ou égale à 0,75 mm est un élément de mauvais pronostic et a plus de risque de s'accompagner de métastases ganglionnaires, viscérales, hépatiques, pulmonaires et cérébrales et d'une mortalité accrue (25 % des cas).

Le mélanome cutané nodulaire est reconnu par un épiderme reposant sur le derme, qui contient des annexes pilosébacées. Le derme et l'hypoderme sont envahis par une grande lésion nodulaire. En superficie, cette lésion contient des thèques de cellules tumorales enroulées les unes sur les autres. Sur certaines lames, quelques thèques sont visibles à la jonction dermo-épidermique. En profondeur, ces cellules tumorales ont un aspect plus fusiforme. Les cellules tumorales sont de grande taille avec un noyau fortement nucléolé. Elles contiennent parfois du pigment noir (mélanine).

La gravité de ces tumeurs, lorsqu'elles sont arrivées au stade nodulaire, commande l'ablation de toute lésion pigmentée suspecte: lésion extensive, de forme encochée, de coloration inégale, nævus qui se modifie.
Évolution et pronostic

Le pronostic est déterminé par l'épaisseur de la tumeur initiale (indice de Breslow) qui est exprimé en millimètres mesurés depuis le point le plus superficiel au point le plus profond de la tumeur, complété par le niveau de Clark qui va de 1 à 5 suivant la couche de la peau la plus profonde atteint par la tumeur, et par le résultat du bilan d'extension (recherche de métastases). Au stade initial d'extension superficielle, le pronostic approche les 100 % de survie à dix ans.

Seule l'exérèse totale de la lésion initiale permet de guérir le mélanome. Les marges de sécurité, c'est-à-dire la surface de peau saine qui doit être enlevée avec le mélanome dépend de son épaisseur. Jusqu'aux années 1980, la marge courante d'excision était d'environ 4 à 5 cm autour de la lésion, ce qui causait d'importantes cicatrices, voire une défiguration. La marge de sécurité actuellement préconisée est de quelques millimètres22. De manière plus précise on recommande une marge de 5 mm pour les mélanomes intra-épidermiques, de 1 cm pour les mélanomes d'une épaisseur inférieure à 1 mm, et de 2 cm pour les mélanomes plus épais (ramenée à 1 cm pour des localisations difficiles à opérer).

Le bilan d'extension local repose essentiellement sur l'épaisseur (indice de Breslow) ainsi que sur la présence de micro-ulcérations23. La biopsie du ganglion sentinelle (celui drainant le lieu du mélanome) est également une procédure courante dans l'évaluation de son extension.

Divers protocoles de chimiothérapie ou d'immunothérapie peuvent être proposés pour les stades avancés, dont un traitement par interféron, ce dernier donnant des résultats mitigés24. Dans les formes métastatiques, plusieurs médicaments sont en cours de test, avec des résultats prometteurs, dont le vemurafenib25 ,un inhibiteur de la kinase mutée codée par le gène BRAF présent chez la moitié des patients, le dabrafenib26 et l'Ipilimumab27, le trametinib28.

Le vemurafenib et l'Ipilimumab ont reçu une AMM (Autorisation de Mise sur le Marché) Européenne en 2012.

Le 4 juillet 2014, une autorisation de mise sur le marché a été accordée au nivolumab par le Japon dans l’indication mélanome non résécable. Il sera commercialisé par la firme japonaise Ono Pharmaceutical sous l’appellation Opdivo. Hors Asie, la molécule est sous licence Bristol-Myers Squibb29.
Différents mélanomes différenciés selon la loi de l'ABCDE :
À gauche de haut en bas : (A) Asymétrie, (B) Bords irréguliers (C) Coloration non homogène (DE) Diamètre important et se modifiant. À droite, des grains de beauté normaux n'ayant pas de caractéristiques anormales (pas d'asymétrie, bords réguliers, couleur homogène, petits et stable en taille).

Elle repose sur la protection solaire (en particulier des enfants) et sur la consultation d'un dermatologue en cas de modification d'un grain de beauté ou d'apparition d'une lésion cutanée noire. La protection solaire repose sur son évitement ou sur l'utilisation de crème solaire protectrice30. Le dermatologue utilise un dermatoscope pour observer les lésions.

Il est recommandé de se méfier d'autant plus des lésions qui sont (règle « ABCDE ») :

A : Asymétrique,
B : Bords irréguliers,
C : Coloration non homogène (la tache est de plusieurs couleurs) comme sur la troisième image en partant de haut en bas : nuance de marron et de beige.
D : Diamètre important (> 6 mm)
E : Évolutif, dont l'aspect se modifie avec le temps.

Ces règles sont d'autant plus importantes que l'on a des antécédents familiaux de mélanome.

Expérimentalement, la vitamine C associée au cuivre aurait un effet toxique sur les cellules de mélanome qui accumulent les ions cuivre31,32,33.
Auto-examen des personnes à risque

Ce qu’il faut rechercher34 :

une tache pigmentée (lésion mélanocytaire) différente des grains de beauté (nævus) ou des taches de rousseur (éphélides) déjà présents sur le corps ;
une lésion cutanée ulcérée qui ne guérit pas ;
un nævus qui grossit.

L’autoexamen peut être réalisé une fois par trimestre. La personne doit être debout, complètement nue, dans un endroit bien éclairé34.

Elle inspecte l’intégralité de son corps, à l’aide d’un miroir en pied, les bras pendant le long du corps, le dos de la main tourné vers le miroir.
Elle examine chaque profil, les bras levés, les paumes de main tournées vers le miroir.
Elle observe les paumes des mains et des pieds, les ongles et les espaces interdigitaux.
Elle vérifie, avec un miroir à main, l’arrière des jambes, du cou, du dos, des fesses et des organes génitaux.
Pour l’examen du cuir chevelu, une aide est nécessaire.


L'évolution d'un cancer se caractérise notamment par l'apparition de mutations spécifiques. Ces mutations induisent des changements dans le jeu de protéines (et ces protéines doivent coopérer pour induire une transformation maligne). Le profilage génomique a identifié des mutations qui semblent déterminantes pour divers cancers ; elles concernent presque toujours des protéines qui initient ou favorisent le développement de la tumeur. Ces protégines sont donc des cibles thérapeutiques possibles35.
Le profil génomique tumoral laisse cependant de côté le rôle des cellules du microenvironnement tumoral qui peuvent aussi jouer un rôle dans la progression tumorale35. Une cartographie de ligands multiépitopes faite à partir d'échantillons de peau humaine par Ostalecki et al. a récemment (2016-2017) mis en évidence des changements dans l'abondance protéique et dans la localisation subcellulaire des mélanocytes et kératinocytes associés à divers stades de développement de mélanome35. Ce travail a aussi montré le rôle délétère d'un couple peptidase (peptidase-like 3 ou SPPL3)-métalloprotéinase (ADAM10) qui semble jouer un rôle critique dans l'évolution cancéreuse via des modifications transmises entre kératinocytes par simple contact cellulaire. Contrôler par un médicament cette communication intercellulaire délétère (et/ou ses effets) pourraient être une nouvelle piste de lutte contre le mélanome35.
Notes et références

↑ J-J. Grob, M-A. Richard, C. Gaudy-Marqueste, « Mélanome cutané » [archive], sur www.therapeutique-dermatologique.org, février 2012 (consulté le 21 juillet 2012)
↑ Exemple illustré sur la page Mélanome nodulaire [archive] de dermatologie.free.fr [archive]
↑ a, b, c et d (en) Bataille V, de Vries E, « Melanoma—Part 1: epidemiology, risk factors, and prevention » [archive] BMJ, 2008;337:a2249. PMID 19022841 [archive]
↑ (en) Whiteman DC, Bray CA, Siskind V, Green AC, Hole DJ, Mackie RM, « Changes in the incidence of cutaneous melanoma in the west of Scotland and Queensland, Australia: hope for health promotion » [archive] Eur J Cancer Prev, 2008;17:243-50. PMID 18414196 [archive]
↑ (en) Giles G, Armstrong BK, Burton RC, Staples MR, Thursfield VJ, « Has mortality from melanoma stopped rising in Australia? Analysis of trends between 1931 and 1994 » [archive] BMJ, 1996;312:1121-5. PMID 8620126 [archive]
↑ (en) Coory M, Baade P, Aitken J, Smithers M, McLeod GR, Ring I, « Trends in situ and invasive melanoma in Queensland, Australia 1982-2002 » [archive], Cancer Causes Control, 2006;17(1):21-2. PMID 16411049 [archive]
↑ a et b Anne Thuret, « L’épidémiologie du mélanome cutané en France et en Europe », Bulletin épidémiologique hebdomadaire, Institut de veille sanitaire « Le bronzage artificiel : une menace bien réelle, mais évitable, pour la santé publique », no 18-19,‎ 22 mai 2012, p. 213-214. (ISSN 0245-7466, lire en ligne [archive] [PDF])
↑ Communiqué de presse InVS [archive] (7 février 2013)
↑ « Epidémiologie des cancers cutanés » [archive], sur Institut national du cancer, 10 mai 2016 (consulté le 7 octobre 2016).
↑ (en) Davies H, Bignell GR, Cox C, Futreal PA et al. « Mutations of the BRAF gene in human cancer » [archive] Nature, 2002;417:949-54. PMID 12068308 [archive]
↑ (en) Jazlyn Read, Karin A.W. Wadt, Nicholas K. Hayward, « Melanoma genetics », Journal of medical genetics.,‎ 2015 (PMID 26337759, DOI 10.1136/jmedgenet-2015-103150, lire en ligne [archive]) modifier
↑ Collège français des enseignants de dermatologie, Masson, 2009
↑ (en) Khlat M, Vail A, Parkin M, Green A « Mortality from melanoma in migrants to Australia: variation by age at arrival and duration of stay » Am J Epidemiol, 1992;135(10):1103-13. PMID 1632422 [archive]
↑ gènes CDKN2A et CDK4 : (en) Miller A, Mihm M « Melanoma » N Engl J Med, 2006;355(1):51-65. PMID 16822996 [archive]
↑ (en) Oliveria S, Saraiya M, Geller A, Heneghan M, Jorgensen C, « Sun exposure and risk of melanoma », in Arch Dis Child, vol. 91-2, p. 131-8, 2006, PMID 16326797 [archive] ; (en) Lee J, Strickland D « Malignant melanoma: social status and outdoor work » Br J Cancer, 1980;41(5):757-63. PMID 7426301 [archive]
↑ (en) Westerdahl J, Olsson H, Måsbäck A, Ingvar C, Jonsson N, Brandt L et al. « Use of sunbeds or sunlamps and malignant melanoma in southern Sweden » [archive] Am J Epidemiol, 1994;140:691-9. PMID 7942771 [archive]
↑ a et b (en) M. Boniol, P. Autier, P. Boyle, S. Gandini, « Cutaneous melanoma attributable to sunbed use: systematic review and meta-analysis », BMJ, no 345,‎ 24 juillet 2012, e4757. (ISSN 1756-1833, DOI 10.1136/bmj.e4757, lire en ligne [archive])
↑ (en) Vaskoff M, Mesrine S, Fournier A, Boutron-Ruault M-C et Clavel-Chapelon F, « Personal history of endometriosis and risk of cutaneous melanoma in a large prospective cohort of french women » [archive], Arch Intern Med. 2007;167:2061-5. PMID 17954799 [archive]
↑ (en) Bliss JM, Ford D, Swerdlow AJ, Armstrong BK, Cristofolini M, Elwood JM et al. « Risk of cutaneous melanoma associated with pigmentation characteristics and freckling: systematic overview of 10 case-control studies. International Melanoma Analysis Group (IMAGE) » [archive] Int J Cancer, 1995;62:367-76. PMID 7635560 [archive]
↑ (en) Fortes C, Mastroeni S, Melchi F, Pilla M.A, Alotto M, Antonelli G, Pasquini P et al. « The association between residential pesticide use and cutaneous melanoma » European Journal of Cancer, 2007;43(6):1066-75. PMID 17331713 [archive]
↑ (en) Whitehead Institute for Biomedical Research 24-06-2004 « Lire en ligne »(Archive • Wikiwix • Archive.is • Google • Que faire ?) (consulté le 30 mars 2013) - « Article complémentaire (4-09-2005) »(Archive • Wikiwix • Archive.is • Google • Que faire ?) (consulté le 30 mars 2013))
↑ (en) Thirlwell C, Nathan P, Melanoma—Part 2: management [archive], BMJ, 2008;337:a2488
↑ (en) Balch CM, Buzaid AC, Soong SJ, Atkins MB, Cascinelli N, Coit DG et al. Final version of the American Joint Committee on Cancer staging system for cutaneous melanoma [archive], J Clin Oncol, 2001;19:3635-48
↑ (en) Ives NJ, Stowe RL, Lorigan P, Wheatley K, Chemotherapy compared with biochemotherapy for the treatment of metastatic melanoma: A meta-analysis of 18 trials involving 2,621 patients [archive], J Clin Oncol, 2007;25:5426-34.
↑ (en) Flaherty KT, Puzanov I, Kim KB et al. Inhibition of mutated, activated BRAF in metastatic melanoma [archive], N Engl J Med, 2010;363:809-819
↑ Hauschild A, Grob JJ, Demidov LV et al. Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial [archive], Lancet, 2012;380:358-365
↑ (en) Hodi FS, O'Day SJ, McDermott DF et al. Improved survival with ipilimumab in patients with metastatic melanoma [archive], N Engl J Med, 2010;363:711-723
↑ Flaherty KT, Hersey P, Nathan P, Garbe C, Milhem M, Demidov LV et al. METRIC Study Group: improved survival with MEK inhibition in BRAF-mutated melanoma [archive], N Engl J Med, 2012;367:107-14
↑ (en) Ono Pharmaceutical Co., Ltd., « Communiqué de presse » [archive] [PDF], 4 juillet 2014 (consulté le 14 juillet 2014).
↑ (en) Green AC, Williams GM, Logan V, Strutton GM, Reduced melanoma after regular sunscreen use: randomized trial follow-up [archive], J Clin Oncol, 2011;29:257–263
↑ Pharmacorama - L'acide ascorbique ou vitamine C (paragraphe Autres effets) [archive]
↑ (en) Bram, Froussard, Guichard, Vitamin C preferential toxicity for malignant melanoma cells Nature [archive] 284, 629 - 631 (17 April 1980);
↑ (en) De Pauw-Gillet MC Control of B16 melanoma cells differentiation and proliferation by CuSO4 and vitamin C Anticancer Res. 1990 Mar-Apr;10(2A):391-5. PMID 2346313 [archive]
↑ a et b Mélanome cutané : la détection précoce est essentielle [archive] sur le site de la Haute Autorité de santé, mai 2013
↑ a, b, c et d Christian Ostalecki, Jung-Hyun Lee, Jochen Dindorf, Lena Collenburg, Stephan Schierer, Beate Simon, Stefan Schliep, Elisabeth Kremmer, Gerold Schuler, and Andreas S. Baur (2017), Multiepitope tissue analysis reveals SPPL3-mediated ADAM10 activation as a key step in the transformation of melanocytes ; Sci. Signal. publié le 14 mars 2017: Vol.10, n°470, eaai8288 DOI: 10.1126/scisignal.aai8288 (résumé [archive])

Voir aussi

Sur les autres projets Wikimedia :

Mélanome, sur Wikimedia Commons Mélanome, sur Wikidata


Arlo J. Miller et Martin C. Mihm (2006) « Melanoma », New England Journal of Medicine, vol. 355, pages 51–65. PMID 16822996 [archive] (en)

Articles connexes

Indice de Breslow
Mélanome de la choroïde

Revenir en haut Aller en bas
Voir le profil de l'utilisateur http://www.atelier-yannistignard.com
Contenu sponsorisé

MessageSujet: Re: Grains of Silica, Sand, Geologists et Y'becca   

Revenir en haut Aller en bas
Grains of Silica, Sand, Geologists et Y'becca
Voir le sujet précédent Voir le sujet suivant Revenir en haut 
Page 1 sur 1
 Sujets similaires
» Lettre de George Sand à Musset.
» Le 1er juillet... George Sand... ET TICHOU
» '1 grain de bravoure pour 3 grains de folie.' (FINI)
» La prude septa (Tyerne Sand)
» Le pois congo : source de protéines et de devises

Permission de ce forum:Vous ne pouvez pas répondre aux sujets dans ce forum
Le clans des mouettes :: Le clans des mouettes-
Sauter vers: